Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(28): e2222035120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399402

ABSTRACT

Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.


Subject(s)
Ficus , Wasps , Animals , Ficus/genetics , Phylogeny , Genomics , Reproductive Isolation , Wasps/genetics , Pollination/genetics
2.
Mol Phylogenet Evol ; 138: 156-173, 2019 09.
Article in English | MEDLINE | ID: mdl-31112781

ABSTRACT

Plantago is a cosmopolitan genus including over 250 species, concentrated in temperate and high-elevation tropical regions. The taxonomy of Plantago is very difficult, mainly because of its reduced morphology, which features relatively few characters for species classification. Consequently, the infrageneric classification of the genus remains controversial and inadequate. In this study we applied high-throughput plastid genome skimming to provide powerful phylogenetic resolution to clarify the relationships within subg. Plantago, which is the largest, most broadly distributed and poorest understood subgenus of Plantago. Ninety-four samples covering ~56% of all species and representing all sections of subg. Plantago as well as an outgroup were successfully sequenced. The resulting phylogenetic topology was used, complemented by field and herbarium studies, to revise the sectional classification of subg. Plantago and present a complete listing of the accepted species in the subgenus. Our phylogenetic results were also tested for their usefulness in clarifying the taxonomic placement of some taxonomically complicated species in the subgenus. We conclude that a combination of morphological studies and state-of-the art high-throughput DNA data provide a useful toolbox for resolving outstanding taxonomic puzzles exemplified by the genus Plantago.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Plantago/classification , Plantago/genetics , Base Sequence , DNA, Plant/genetics , Phylogeny , Plastids/genetics
3.
Mol Phylogenet Evol ; 122: 46-58, 2018 05.
Article in English | MEDLINE | ID: mdl-29371027

ABSTRACT

Ficus (Moraceae) is well diversified in the Neotropics with two lineages inhabiting the wet forests of this region. The hemiepiphytes of section Americanae are the most diversified with c. 120 species, whereas section Pharmacosycea includes about 20 species mostly with a terrestrial habit. To reconstruct the biogeographical history and diversification of Ficus in the Americas, we produced a dated Bayesian phylogenetic hypothesis of Neotropical Ficus including two thirds of the species sequenced for five nuclear regions (At103, ETS, G3pdh, ITS/5.8S and Tpi). Ancestral range was estimated using all models available in Biogeobears and Binary State Speciation and Extinction analysis was used to evaluate the role of the initial habit and propagule size in diversification. The phylogenetic analyses resolved both Neotropical sections as monophyletic but the internal relationships between species in section Americanae remain unclear. Ficus started their diversification in the Neotropics between the Oligocene and Miocene. The genus experienced two bursts of diversification: in the middle Miocene and the Pliocene. Colonization events from the Amazon to adjacent areas coincide with the end of the Pebas system (10 Mya) and the connection of landmasses. Divergence of endemic species in the Atlantic forest is inferred to have happened after its isolation and the opening and consolidation of the Cerrado. Our results suggest a complex diversification in the Atlantic forest differing between postulated refuges and more instable areas in the South distribution of the forest. Finally the selection for initial hemiepiphytic habit and small to medium propagule size influenced the diversification and current distribution of the species at Neotropical forests marked by the historical instability and long-distance dispersal.


Subject(s)
Ficus/classification , Americas , Animals , Bayes Theorem , Biodiversity , Forests , Phylogeny , Phylogeography
4.
Mol Phylogenet Evol ; 109: 93-104, 2017 04.
Article in English | MEDLINE | ID: mdl-28042043

ABSTRACT

Standard Sanger chloroplast markers provide limited information to resolve species level relationships within plants, in particular within large genera. Figs (Ficus L., Moraceae) compose one of the 50 largest genera of angiosperms with ∼750 species occurring in the tropics and subtropics worldwide. Figs, in addition to being a keystone food resource in rainforests, are well-known for the mutualistic interactions with their pollinating wasps. It is regarded as a model system for understanding co-evolution dating back more than 75million years. However, despite significant taxon sampling, combinations of low copy nuclear, nuclear ribosomal and chloroplast regions have not been able to confidently resolve relationships among major groups of figs. Using a high throughput sequencing approach we attempted to resolve the major lineages of Ficus based on plastome data. In this study, we show that the use of a de novo assembled plastome from within the genus provides less ambiguity and higher coverage across the 59 Ficus and 6 outgroup plastome assemblies compared to using the nearest available reference plastome outside the genus resulting in improved resolution and higher support of the phylogenetic relationships within Ficus inferred from plastome data. Chloroplast genome data confidently resolved relationships among major groups of figs and largely support current understanding based on nuclear sequence data including passively pollinated Neotropical section Pharmacosycea as sister lineage to all other Ficus. However, conflicts between the new plastome topology and previous nuclear studies are observed for both individual species as well as relationships among some sections at deeper levels. Conflicts could be caused by lack of resolution in the nuclear data or may indicate potential cyto-nuclear discordance as previously observed in an African lineage of Ficus.


Subject(s)
Ficus/genetics , Evolution, Molecular , Ficus/classification , Genes, Plant , Genome, Chloroplast , High-Throughput Nucleotide Sequencing , Multilocus Sequence Typing , Phylogeny , Plastids/genetics
5.
Sci Rep ; 5: 11942, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26165523

ABSTRACT

The global herbal products market has grown in recent years, making regulation of these products paramount for public healthcare. For instance, the common horsetail (Equisetum arvense L.) is used in numerous herbal products, but it can be adulterated with closely related species, especially E. palustre L. that can produce toxic alkaloids. As morphology-based identification is often difficult or impossible, the identification of processed material can be aided by molecular techniques. In this study, we explore two molecular identification techniques as methods of testing the purity of these products: a Thin Layer Chromatography approach (TLC-test) included in the European Pharmacopoeia and a DNA barcoding approach, used in recent years to identify material in herbal products. We test the potential of these methods for distinguishing and identifying these species using material from herbarium collections and commercial herbal products. We find that both methods can discriminate between the two species and positively identify E. arvense. The TLC-test is more cost- and time-efficient, but DNA barcoding is more powerful in determining the identity of adulterant species. Our study shows that, although DNA barcoding presents certain advantages, other established laboratory methods can perform as well or even better in confirming species' identity in herbal products.


Subject(s)
Chromatography, Thin Layer , DNA Barcoding, Taxonomic , DNA/analysis , Equisetum/genetics , Equisetum/classification , Phylogeny , Sequence Analysis, DNA
6.
Mol Phylogenet Evol ; 69(1): 205-17, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747523

ABSTRACT

Snowdrops (Galanthus, 20 spp.; Amaryllidaceae) are cherished garden plants and the world's most traded wild-sourced ornamental bulb genus. Despite their popularity and economic importance, species delimitation is problematic and the infrageneric classification uncertain. We present a molecular phylogenetic study of Galanthus with the aim of resolving these issues and to better understand the evolution within the genus. Sequences of nuclear encoded nrITS, and plastid encoded matK, trnLF, ndhF, and psbK-psbI, for all currently recognised species and two naturally occurring putative hybrids, were analysed using maximum parsimony and Bayesian inference. Phylogenetic analysis of Galanthus, based on nuclear ITS sequences, provides a well-resolved topology, including seven well-supported named clades (platyphyllus, trojanus, ikariae, elwesii, nivalis, woronowii, and alpinus), and five major clades (A-E). The recovered ITS topology is in accordance with the geographical distribution of Galanthus species. The combined plastid data set provided far less resolution than that of ITS, with generally lower levels of statistical support, and one case of significant incongruence with the ITS dataset (involving G. gracilis). Phylogenetic network and hybridization analyses identified several possible hybridization events but these are more likely to be due to the result of a lack of resolution in the plastid dataset. The putative natural hybrid, G. ×valentinei nothosubsp. subplicatus, is supported by our data and analyses, whereas a hybrid origin for G. ×allenii is not. ITS and plastid data indicated that some Galanthus species are in need of taxonomic recircumscription.


Subject(s)
Biological Evolution , Cell Nucleus/genetics , DNA, Plant/classification , DNA, Ribosomal Spacer/classification , Galanthus/classification , Phylogeny , Plastids/genetics , Bayes Theorem , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Europe , Galanthus/genetics , Hybridization, Genetic , Models, Genetic , Phylogeography , Plant Dispersal , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...