Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Cell Sci ; 137(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38477365
2.
Sci Transl Med ; 16(729): eadh8335, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198568

ABSTRACT

Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Placenta , Signal Transduction , Sequence Analysis, RNA , Parturition
3.
Am J Obstet Gynecol ; 230(4): 450.e1-450.e18, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37806612

ABSTRACT

BACKGROUND: Intravascular inflammation and an antiangiogenic state have been implicated in the pathophysiology of preeclampsia. On the basis of the profiles of their angiogenic/antiangiogenic factors, women with preeclampsia at term may be classified into 2 subgroups with different characteristics and prevalence of adverse outcomes. This study was undertaken to examine whether these 2 subgroups of preeclampsia at term also show differences in their profiles of intravascular inflammation. OBJECTIVE: This study aimed to determine the plasma profiles of cytokines and chemokines in women with preeclampsia at term who had a normal or an abnormal angiogenic profile. STUDY DESIGN: A nested case-control study was conducted to include women classified into 3 groups: women with an uncomplicated pregnancy (n=213) and women with preeclampsia at term with a normal (n=55) or an abnormal (n=41) angiogenic profile. An abnormal angiogenic profile was defined as a plasma ratio of placental growth factor and soluble fms-like tyrosine kinase-1 multiple of the median <10th percentile for gestational age. Concentrations of cytokines were measured by multiplex immunoassays. RESULTS: Women with preeclampsia at term and an abnormal angiogenic profile showed evidence of the greatest intravascular inflammation among the study groups. These women had higher plasma concentrations of 5 cytokines (interleukin-6, interleukin-8, interleukin-12/interleukin-23p40, interleukin-15, and interleukin-16) and 7 chemokines (eotaxin, eotaxin-3, interferon-γ inducible protein-10, monocyte chemotactic protein-4, macrophage inflammatory protein-1ß, macrophage-derived chemokine, and thymus and activation-regulated chemokine compared to women with an uncomplicated pregnancy. By contrast, women with preeclampsia at term and a normal angiogenic profile, compared to women with an uncomplicated pregnancy, had only a higher plasma concentration of monocyte chemotactic protein-4. A correlation between severity of the antiangiogenic state, blood pressure, and plasma concentrations of a subset of cytokines was observed. CONCLUSION: Term preeclampsia can be classified into 2 clusters. One is characterized by an antiangiogenic state coupled with an excessive inflammatory process, whereas the other has neither of these features. These findings further support the heterogeneity of preeclampsia at term and may explain the distinct clinical outcomes.


Subject(s)
Pre-Eclampsia , Pregnancy , Female , Humans , Placenta Growth Factor , Cytokines , Case-Control Studies , Angiogenesis Inducing Agents , Biomarkers , Inflammation , Monocyte Chemoattractant Proteins , Vascular Endothelial Growth Factor Receptor-1
4.
J Cell Sci ; 136(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-38158843
5.
Discrete Comput Geom ; 70(4): 1862-1883, 2023.
Article in English | MEDLINE | ID: mdl-38022897

ABSTRACT

The generalized circumradius of a set of points A⊆Rd with respect to a convex body K equals the minimum value of λ≥0 such that a translate of λK contains A. Each choice of K gives a different function on the set of bounded subsets of Rd; we characterize which functions can arise in this way. Our characterization draws on the theory of diversities, a recently introduced generalization of metrics from functions on pairs to functions on finite subsets. We additionally investigate functions which arise by restricting the generalized circumradius to a finite subset of Rd. We obtain elegant characterizations in the case that K is a simplex or parallelotope.

6.
Front Bioinform ; 3: 1178600, 2023.
Article in English | MEDLINE | ID: mdl-37799982

ABSTRACT

NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.

7.
EMBO J ; 42(18): e113987, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37577760

ABSTRACT

Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor ß1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active ß1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.


Subject(s)
Monomeric GTP-Binding Proteins , Ovarian Neoplasms , Humans , Female , Integrins/metabolism , Proteomics , Phosphatidylinositol 3-Kinases/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Monomeric GTP-Binding Proteins/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
8.
Biochem Soc Trans ; 51(4): 1559-1569, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37622523

ABSTRACT

The ability to remodel and move cellular membranes, and the cargoes regulated by these membranes, allows for specialised functions to occur in distinct regions of the cell in a process known as cellular polarisation. The ability to collectively co-ordinate such polarisation between cells allows for the genesis of multicellularity, such as the formation of organs. During tumourigenesis, the rules for such tissue polarisation become dysregulated, allowing for collective polarity rearrangements that can drive metastasis. In this review, we focus on how membrane trafficking underpins collective cell invasion and metastasis in cancer. We examine this through the lens of the ADP-ribosylation factor (ARF) subfamily of small GTPases, focusing on how the ARF regulatory network - ARF activators, inactivators, effectors, and modifications - controls ARF GTPase function.


Subject(s)
ADP-Ribosylation Factors , Carcinogenesis , Humans , Cell Membrane , Cell Transformation, Neoplastic
9.
J Immunol ; 211(7): 1082-1098, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37647360

ABSTRACT

T cells are implicated in the pathophysiology of preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Specifically, maternal decidual T cells infiltrate the chorioamniotic membranes in chronic chorioamnionitis (CCA), a placental lesion considered to reflect maternal anti-fetal rejection, leading to preterm labor and birth. However, the phenotype and TCR repertoire of decidual T cells in women with preterm labor and CCA have not been investigated. In this study, we used phenotyping, TCR sequencing, and functional assays to elucidate the molecular characteristics and Ag specificity of T cells infiltrating the chorioamniotic membranes in women with CCA who underwent term or preterm labor. Phenotyping indicated distinct enrichment of human decidual effector memory T cell subsets in cases of preterm labor with CCA without altered regulatory T cell proportions. TCR sequencing revealed that the T cell repertoire of CCA is characterized by increased TCR richness and decreased clonal expansion in women with preterm labor. We identified 15 clones associated with CCA and compared these against established TCR databases, reporting that infiltrating T cells may possess specificity for maternal and fetal Ags, but not common viral Ags. Functional assays demonstrated that choriodecidual T cells can respond to maternal and fetal Ags. Collectively, our findings provide, to our knowledge, novel insight into the complex processes underlying chronic placental inflammation and further support a role for effector T cells in the mechanisms of disease for preterm labor and birth. Moreover, this work further strengthens the contribution of adaptive immunity to the syndromic nature of preterm labor and birth.


Subject(s)
Chorioamnionitis , Obstetric Labor, Premature , Pregnancy , Infant, Newborn , Humans , Female , Placenta , Inflammation , Receptors, Antigen, T-Cell
10.
J Neural Eng ; 20(5)2023 09 18.
Article in English | MEDLINE | ID: mdl-37651998

ABSTRACT

Objective.With the rapid adoption of high-density electrode arrays for recording neural activity, electrophysiology data volumes within labs and across the field are growing at unprecedented rates. For example, a one-hour recording with a 384-channel Neuropixels probe generates over 80 GB of raw data. These large data volumes carry a high cost, especially if researchers plan to store and analyze their data in the cloud. Thus, there is a pressing need for strategies that can reduce the data footprint of each experiment.Approach.Here, we establish a set of benchmarks for comparing the performance of various compression algorithms on experimental and simulated recordings from Neuropixels 1.0 (NP1) and 2.0 (NP2) probes.Main results.For lossless compression, audio codecs (FLACandWavPack) achieve compression ratios (CRs) 6% higher for NP1 and 10% higher for NP2 than the best general-purpose codecs, at the expense of decompression speed. For lossy compression, theWavPackalgorithm in 'hybrid mode' increases the CR from 3.59 to 7.08 for NP1 and from 2.27 to 7.04 for NP2 (compressed file size of ∼14% for both types of probes), without adverse effects on spike sorting accuracy or spike waveforms.Significance.Along with the tools we have developed to make compression easier to deploy, these results should encourage all electrophysiologists to apply compression as part of their standard analysis workflows.


Subject(s)
Data Compression , Algorithms , Benchmarking , Cell Movement , Electrophysiology
11.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36880595

ABSTRACT

ARF GTPases are central regulators of membrane trafficking that control local membrane identity and remodeling facilitating vesicle formation. Unraveling their function is complicated by the overlapping association of ARFs with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and numerous interactors. Through a functional genomic screen of three-dimensional (3D) prostate cancer cell behavior, we explore the contribution of ARF GTPases, GEFs, GAPs, and interactors to collective invasion. This revealed that ARF3 GTPase regulates the modality of invasion, acting as a switch between leader cell-led chains of invasion or collective sheet movement. Functionally, the ability of ARF3 to control invasion modality is dependent on association and subsequent control of turnover of N-cadherin. In vivo, ARF3 levels acted as a rheostat for metastasis from intraprostatic tumor transplants and ARF3/N-cadherin expression can be used to identify prostate cancer patients with metastatic, poor-outcome disease. Our analysis defines a unique function for the ARF3 GTPase in controlling how cells collectively organize during invasion and metastasis.


Subject(s)
ADP-Ribosylation Factors , GTPase-Activating Proteins , Monomeric GTP-Binding Proteins , Prostatic Neoplasms , Humans , Male , ADP-Ribosylation Factors/genetics , Cadherins/genetics , Endocytosis , GTPase-Activating Proteins/genetics , Prostatic Neoplasms/genetics
12.
J Math Biol ; 86(3): 44, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36757460

ABSTRACT

The standard models of sequence evolution on a tree determine probabilities for every character or site pattern. A flattening is an arrangement of these probabilities into a matrix, with rows corresponding to all possible site patterns for one set A of taxa and columns corresponding to all site patterns for another set B of taxa. Flattenings have been used to prove difficult results relating to phylogenetic invariants and consistency and also form the basis of several methods of phylogenetic inference. We prove that the rank of the flattening equals [Formula: see text], where r is the number of states and [Formula: see text] is the minimum size of a vertex cut separating A from B. When T is binary the rank of the flattening equals [Formula: see text] where [Formula: see text] equals the parsimony length of the binary character separating A and B. We provide a direct proof that requires little more than undergraduate algebra, but note that the formula could also be derived from work by Casanellas and Fernández-Sánchez (2011) on phylogenetic invariants.


Subject(s)
Algorithms , Phylogeny , Probability
13.
Sci Adv ; 9(5): eabq1858, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36735782

ABSTRACT

The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown. We identify an unexpected function of PODXL as a decoy receptor for galectin-3 (GAL3), whereby the PODXL-GAL3 interaction releases GAL3 repression of integrin-based invasion. Differential cortical targeting of PODXL, regulated by ubiquitination, is the molecular mechanism controlling alternate fates. Both PODXL high and low surface levels occur in parallel subpopulations within cancer cells. Orthotopic intraprostatic xenograft of PODXL-manipulated cells or those with different surface levels of PODXL define that this axis controls metastasis in vivo. Clinically, interplay between PODXL-GAL3 stratifies prostate cancer patients with poor outcome. Our studies define the molecular mechanisms and context in which PODXL promotes invasion and metastasis.


Subject(s)
Glycocalyx , Sialoglycoproteins , Male , Humans , Glycocalyx/metabolism , Sialoglycoproteins/metabolism , Heterografts , Transplantation, Heterologous
14.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38223308

ABSTRACT

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

16.
Nat Commun ; 13(1): 5317, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085324

ABSTRACT

Single cell profiling by genetic, proteomic and imaging methods has expanded the ability to identify programmes regulating distinct cell states. The 3-dimensional (3D) culture of cells or tissue fragments provides a system to study how such states contribute to multicellular morphogenesis. Whether cells plated into 3D cultures give rise to a singular phenotype or whether multiple biologically distinct phenotypes arise in parallel is largely unknown due to a lack of tools to detect such heterogeneity. Here we develop Traject3d (Trajectory identification in 3D), a method for identifying heterogeneous states in 3D culture and how these give rise to distinct phenotypes over time, from label-free multi-day time-lapse imaging. We use this to characterise the temporal landscape of morphological states of cancer cell lines, varying in metastatic potential and drug resistance, and use this information to identify drug combinations that inhibit such heterogeneity. Traject3d is therefore an important companion to other single-cell technologies by facilitating real-time identification via live imaging of how distinct states can lead to alternate phenotypes that occur in parallel in 3D culture.


Subject(s)
Neoplasms , Proteomics , Diagnostic Imaging , Humans , Neoplasms/diagnostic imaging , Phenotype
17.
EMBO J ; 41(17): e109205, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35880301

ABSTRACT

Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.


Subject(s)
Actins , Endoplasmic Reticulum , Actins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Filamins/metabolism , Phenotype
18.
Front Psychol ; 13: 868001, 2022.
Article in English | MEDLINE | ID: mdl-35432071

ABSTRACT

Working memory (WM) is the system responsible for maintaining and manipulating information, in the face of ongoing distraction. In turn, WM span is perceived to be an individual-differences construct reflecting the limited capacity of this system. Recently, however, there has been some evidence to suggest that WM capacity can increase through training, raising the possibility that training can functionally alter the neural structures supporting WM. To address the hypothesis that the neural substrates underlying WM are targeted by training, we conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of WM training using Activation Likelihood Estimation (ALE). Our results demonstrate that WM training is associated exclusively with decreases in blood oxygenation level-dependent (BOLD) responses in clusters within the fronto-parietal system that underlie WM, including the bilateral inferior parietal lobule (BA 39/40), middle (BA 9) and superior (BA 6) frontal gyri, and medial frontal gyrus bordering on the cingulate gyrus (BA 8/32). We discuss the various psychological and physiological mechanisms that could be responsible for the observed reductions in the BOLD signal in relation to WM training, and consider their implications for the construct of WM span as a limited resource.

19.
Am J Emerg Med ; 56: 57-62, 2022 06.
Article in English | MEDLINE | ID: mdl-35366439

ABSTRACT

OBJECTIVES: We compared and validated the performance accuracy of simplified comorbidity evaluation compared to the Charlson Comorbidity Index (CCI) predicting COVID-19 severity. In addition, we also determined whether risk prediction of COVID-19 severity changed during different COVID-19 pandemic outbreaks. METHODS: We enrolled all patients whose SARS-CoV-2 PCR tests were performed at six different hospital Emergency Departments in 2020. Patients were divided into three groups based on the various COVID-19 outbreaks in the US (first wave: March-May 2020, second wave: June-September 2020, and third wave: October-December 2020). A simplified comorbidity evaluation was used as an independent risk factor to predict clinical outcomes using multivariate logistic regressions. RESULTS: A total of 22,248 patients were included, for which 7023 (32%) patients tested COVID-19 positive. Higher percentages of COVID-19 patients with more than three chronic conditions had worse clinical outcomes (i.e., hospital and intensive care unit admissions, receiving invasive mechanical ventilations, and in-hospital mortality) during all three COVID-19 outbreak waves. CONCLUSIONS: This simplified comorbidity evaluation was validated to be associated with COVID clinical outcomes. Such evaluation did not perform worse when compared with CCI to predict in-hospital mortality.


Subject(s)
COVID-19 , COVID-19/epidemiology , Comorbidity , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
20.
J Cell Sci ; 135(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35188214

ABSTRACT

February is LGBT+ history month, and to celebrate, Journal of Cell Science Editorial Advisory Board member David Bryant organised a conversation with a selection of scientists to explore their experiences of being LGBT+ in academia.


Subject(s)
Leadership , Sexual and Gender Minorities , Career Mobility , Communication , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...