Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
ACS Infect Dis ; 10(6): 1935-1948, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38757505

ABSTRACT

Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.


Subject(s)
Cathepsin B , Schistosoma mansoni , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Animals , Schistosoma mansoni/enzymology , Schistosoma mansoni/drug effects , Crystallography, X-Ray , Schistosomicides/pharmacology , Schistosomicides/chemistry , Protein Binding , Models, Molecular
2.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37134237

ABSTRACT

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Subject(s)
Enzyme Inhibitors , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Enzyme Inhibitors/chemistry , Crystallography
3.
RSC Med Chem ; 14(2): 341-355, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36846371

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 µM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

4.
Phys Chem Chem Phys ; 25(3): 1728-1733, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36594655

ABSTRACT

Among non-covalent interactions, B-H⋯π and C-H⋯π hydrogen bonding is rather weak and less studied. Nevertheless, since both can affect the energetics of protein-ligand binding, their understanding is an important prerequisite for reliable predictions of affinities. Through a combination of high-resolution X-ray crystallography and quantum-chemical calculations on carbonic anhydrase II/carborane-based inhibitor systems, this paper provides the first example of B-H⋯π hydrogen bonding in a protein-ligand complex. It shows that the B-H⋯π interaction is stabilized by dispersion, followed by electrostatics. Furthermore, it demonstrates that the similar C-H⋯π interaction is twice as strong, with a slightly smaller contribution of dispersion and a slightly higher contribution of electrostatics. Such a detailed insight will facilitate the rational design of future protein ligands, controlling these types of non-covalent interactions.


Subject(s)
Carbonic Anhydrase II , Sulfonamides , Ligands , Sulfanilamide , Crystallography, X-Ray
5.
J Med Chem ; 65(20): 14082-14103, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36201304

ABSTRACT

Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.


Subject(s)
Membrane Proteins , Nucleotides, Cyclic , Mice , Animals , Humans , Nucleotides, Cyclic/chemistry , Ligands , Membrane Proteins/metabolism , Nucleotidyltransferases , Cytokines , Interferons
6.
Antiviral Res ; 208: 105449, 2022 12.
Article in English | MEDLINE | ID: mdl-36265804

ABSTRACT

Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still needed. The protein-protein interaction between polymerase subunits PA and PB1 is one such possible target. We recently identified a modified decapeptide derived from the N-terminus of the PB1 subunit with high affinity for the C-terminal part of the PA subunit. Here, we optimized its amino acid hotspots to maintain the inhibitory potency and greatly increase peptide solubility. This allowed thermodynamic characterization of peptide binding to PA. Solving the X-ray structure of the peptide-PA complex provided structural insights into the interaction. Additionally, we optimized intracellular delivery of the peptide using a bicyclic strategy that led to improved inhibition in cell-based assays.


Subject(s)
Influenza, Human , Humans , Influenza, Human/drug therapy , Protein Binding , RNA-Dependent RNA Polymerase , Peptides/pharmacology , Peptides/metabolism , Thermodynamics
7.
J Enzyme Inhib Med Chem ; 37(1): 515-526, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35144520

ABSTRACT

Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile Gü1303 and a 3-cyano-3-aza-ß-amino acid Gü2602. Crystal structures of their covalent complexes were determined with mature CatK as well as a zymogen-like activation intermediate of CatK. Binding mode analysis, together with quantum chemical calculations, revealed that the extraordinary picomolar potency of Gü2602 is entropically favoured by its conformational flexibility at the nonprimed-primed subsites boundary. Furthermore, we demonstrated by live cell imaging that cyanohydrazides effectively target mature CatK in osteosarcoma cells. Cyanohydrazides also suppressed the maturation of CatK by inhibiting the autoactivation of the CatK zymogen. Our results provide structural insights for the rational design of cyanohydrazide inhibitors of CatK as potential drugs.


Subject(s)
Cathepsin K/antagonists & inhibitors , Hydrazines/pharmacology , Nitriles/pharmacology , Protease Inhibitors/pharmacology , Cathepsin K/metabolism , Dose-Response Relationship, Drug , Humans , Hydrazines/chemistry , Models, Molecular , Molecular Structure , Nitriles/chemistry , Protease Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1411-1424, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726169

ABSTRACT

The SorC/DeoR family is a large family of bacterial transcription regulators that are involved in the control of carbohydrate metabolism and quorum sensing. To understand the structural basis of DNA recognition, structural studies of two functionally characterized SorC/DeoR family members from Bacillus subtilis were performed: the deoxyribonucleoside regulator bsDeoR and the central glycolytic genes regulator bsCggR. Each selected protein represents one of the subgroups that are recognized within the family. Crystal structures were determined of the N-terminal DNA-binding domains of bsDeoR and bsCggR in complex with DNA duplexes representing the minimal operator sequence at resolutions of 2.3 and 2.1 Å, respectively. While bsDeoRDBD contains a homeodomain-like HTH-type domain, bsCggRDBD contains a winged helix-turn-helix-type motif. Both proteins form C2-symmetric dimers that recognize two consecutive major grooves, and the protein-DNA interactions have been analyzed in detail. The crystal structures were used to model the interactions of the proteins with the full DNA operators, and a common mode of DNA recognition is proposed that is most likely to be shared by other members of the SorC/DeoR family.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation
9.
Eur J Med Chem ; 224: 113717, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34371463

ABSTRACT

Peptidomimetic inhibitors of fibroblast activation protein (FAP) are regarded as promising tools for tumor targeting in vivo. Even though several peptidomimetic compounds with nanomolar potency have been described, broad chemical space for further modification remained unexplored. Therefore, we set to analyze the structure-activity relationship (SAR) of pseudopeptide compound series with α-ketoamide warheads in order to explore the contributions of the P1' and P2' moieties to the inhibitory potency. A series of novel inhibitors bearing varied P1' and/or P2' moieties was synthesized by combining a Passerini reaction-Amine Deprotection-Acyl Migration (PADAM) approach with peptide coupling and subsequent oxidation. The resulting compounds inhibited FAP and the related prolyl endopeptidase (PREP) with potencies in the nanomolar to sub-nanomolar range. The most potent FAP inhibitor IOCB22-AP446 (6d, IC50 = 89 pM) had about 36-fold higher inhibition potency than the most potent inhibitor published to date. The compounds were selective over FAP's closest homolog DPP-IV, were stable in human and mouse plasma and in mouse microsomes, and displayed minimal cytotoxicity in tissue cultures.


Subject(s)
Fibroblasts/metabolism , Prolyl Oligopeptidases/metabolism , Animals , Humans , Mice , Molecular Structure , Structure-Activity Relationship
10.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299354

ABSTRACT

The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.


Subject(s)
Endonucleases/antagonists & inhibitors , Luteolin/chemical synthesis , Luteolin/pharmacology , Orthomyxoviridae/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Catalytic Domain/drug effects , Viral Proteins/antagonists & inhibitors
11.
Chembiochem ; 22(18): 2741-2761, 2021 09 14.
Article in English | MEDLINE | ID: mdl-33939874

ABSTRACT

This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).


Subject(s)
Boron Compounds/chemistry , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Binding Sites , Boron Compounds/metabolism , Boron Compounds/therapeutic use , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/therapeutic use , Humans , Molecular Dynamics Simulation , Neoplasms/drug therapy , Organometallic Compounds/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
12.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34006103

ABSTRACT

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Subject(s)
Antifungal Agents/chemistry , Aspartic Acid Proteases/antagonists & inhibitors , Cryptococcus neoformans/enzymology , Fungal Proteins/antagonists & inhibitors , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspartic Acid Proteases/genetics , Aspartic Acid Proteases/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Evaluation, Preclinical , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/drug effects , HIV/enzymology , HIV Protease/chemistry , HIV Protease/metabolism , Molecular Dynamics Simulation , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Substrate Specificity
13.
J Enzyme Inhib Med Chem ; 36(1): 914-921, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33843395

ABSTRACT

Pathogenic Candida albicans yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other Candida species and resistance. New medications are thus required. Secreted aspartic protease of C. parapsilosis (Sapp1p) is a promising target. We have thus solved the crystal structures of Sapp1p complexed to four peptidomimetic inhibitors. Three potent inhibitors (Ki: 0.1, 0.4, 6.6 nM) resembled pepstatin A (Ki: 0.3 nM), a general aspartic protease inhibitor, in terms of their interactions with Sapp1p. However, the weaker inhibitor (Ki: 14.6 nM) formed fewer nonpolar contacts with Sapp1p, similarly to the smaller HIV protease inhibitor ritonavir (Ki: 1.9 µM), which, moreover, formed fewer H-bonds. The analyses have revealed the structural determinants of the subnanomolar inhibition of C. parapsilosis aspartic protease. Because of the high similarity between Saps from different Candida species, these results can further be used for the design of potent and specific Sap inhibitor-based antimycotic drugs.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Candida parapsilosis/enzymology , Fungal Proteins/antagonists & inhibitors , Peptidomimetics/pharmacology , Protease Inhibitors/pharmacology , Aspartic Acid Endopeptidases/metabolism , Dose-Response Relationship, Drug , Fungal Proteins/metabolism , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
14.
Molecules ; 26(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33673017

ABSTRACT

Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.


Subject(s)
Drug Resistance, Viral/drug effects , Influenza A virus/enzymology , Protein Subunits/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/antagonists & inhibitors , Crystallography, X-Ray , Influenza A virus/drug effects , Models, Molecular , Mutant Proteins/metabolism , Mutation/genetics , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Quantum Theory , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Thermodynamics , Viral Proteins/chemistry , Viral Proteins/metabolism
15.
Electrophoresis ; 42(7-8): 910-919, 2021 04.
Article in English | MEDLINE | ID: mdl-33405254

ABSTRACT

Capillary electrophoresis (CE) has been applied for determination of the thermodynamic acidity constants (pKa ) of the sulfamidoalkyl and sulfonamidoalkyl groups, the actual and limiting ionic mobilities and hydrodynamic radii of important compounds, eight carborane-based inhibitors of carbonic anhydrases, which are potential new anticancer drugs. Two types of carboranes were investigated, (i) icosahedral cobalt bis(dicarbollide)(1-) ion with sulfamidoalkyl moieties, and (ii) 7,8-nido-dicarbaundecaborate with sulfonamidoalkyl side chains. First, the mixed acidity constants, pKamix , of the sulfamidoalkyl and sulfonamidoalkyl groups of the above carboranes and their actual ionic mobilities were determined by nonlinear regression analysis of the pH dependences of their effective electrophoretic mobility measured by capillary electrophoresis in the pH range 8.00-12.25, at constant ionic strength (25 mM), and constant temperature (25°C). Second, the pKamix were recalculated to the thermodynamic pKa s using the Debye-Hückel theory. The sulfamidoalkyl and sulfonamidoalkyl groups were found to be very weakly acidic with the pKa s in the range 10.78-11.45 depending on the type of carborane cluster and on the position and length of the alkyl chain on the carborane scaffold. These pKa s were in a good agreement with the pKa s (10.67-11.27) obtained by new program AnglerFish (freeware at https://echmet.natur.cuni.cz), which provides thermodynamic pKa s and limiting ionic mobilities directly from the raw CE data. The absolute values of the limiting ionic mobilities of univalent and divalent carborane anions were in the range 18.3-27.8 TU (Tiselius unit, 1 × 10-9 m2 /Vs), and 36.4-45.9 TU, respectively. The Stokes hydrodynamic radii of univalent and divalent carborane anions varied in the range 0.34-0.52 and 0.42-0.52 nm, respectively.


Subject(s)
Carbonic Anhydrases , Hydrodynamics , Acids , Electrophoresis, Capillary , Hydrogen-Ion Concentration , Ions
16.
Chempluschem ; 86(3): 351, 2021 03.
Article in English | MEDLINE | ID: mdl-33369232

ABSTRACT

Invited for this month's cover is a collaboration from three institutes from the Czech Academy of Sciences: Institute of Inorganic Chemistry, Institute of Organic Chemistry and Biochemistry, and Institute of Molecular Genetics, and the University of Pardubice. The cover picture shows a family of potent and selective CA IX inhibitors that combines the structural motif of a bulky inorganic cobalt bis(dicarbollide) polyhedral ion with a propylsulfonamido anchor group. Read the full text of the article at 10.1002/cplu.202000574.


Subject(s)
Carbonic Anhydrase Inhibitors , Neoplasms , Carbonic Anhydrase IX , Cobalt , Humans
17.
Chempluschem ; 86(3): 352-363, 2021 03.
Article in English | MEDLINE | ID: mdl-32955786

ABSTRACT

Carbonic anhydrase IX (CAIX) is an enzyme expressed on the surface of cells in hypoxic tumors. It plays a role in regulation of tumor pH and promotes thus tumor cell survival and occurrence of metastases. Here, derivatives of the cobalt bis(dicarbollide)(1-) anion are reported that are based on substitution at the carbon sites of the polyhedra by two alkylsulfonamide groups differing in the length of the aliphatic connector (from C1 to C4, n=1-4), which were prepared by cobalt insertion into the 7-sulfonamidoalkyl-7,8-dicarba-nido-undecaborate ions. Pure meso- and rac-diastereoisomeric forms were isolated. The series is complemented with monosubstituted species (n=2). Synthesis by a direct method furnished similar derivatives (n=2, 3), which are chlorinated at the B(8,8') boron sites. All compounds inhibited CAIX with subnanomolar inhibition constants and showed high selectivity for CAIX. The best inhibitory properties were observed for the compound with n= 3 and two substituents present in rac-arrangement with Ki =20 pM and a selectivity index of 668. X-ray crystallography was used to study interactions of these compounds with the active site of CAIX on the structural level.


Subject(s)
Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Sulfonamides/chemistry , Binding Sites , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/therapeutic use , Catalytic Domain , Coordination Complexes/metabolism , Coordination Complexes/therapeutic use , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology
18.
ACS Infect Dis ; 7(5): 1077-1088, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33175511

ABSTRACT

Schistosomiasis, a parasitic disease caused by blood flukes of the genus Schistosoma, is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target. We screened a library of peptidomimetic vinyl sulfones against SmCB1 and identified the most potent SmCB1 inhibitors reported to date that are active in the subnanomolar range with second order rate constants (k2nd) of ∼2 × 105 M-1 s-1. High resolution crystal structures of the two best inhibitors in complex with SmCB1 were determined. Quantum chemical calculations of their respective binding modes identified critical hot spot interactions in the S1' and S2 subsites. The most potent inhibitor targets the S1' subsite with an N-hydroxysulfonic amide moiety and displays favorable functional properties, including bioactivity against the pathogen, selectivity for SmCB1 over human cathepsin B, and reasonable metabolic stability. Our results provide structural insights for the rational design of next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.


Subject(s)
Cathepsin B , Schistosomiasis , Animals , Humans , Schistosoma mansoni , Schistosomiasis/drug therapy , Sulfones/pharmacology
19.
Proc Natl Acad Sci U S A ; 117(51): 32395-32401, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33273123

ABSTRACT

Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.


Subject(s)
Luminescent Proteins/chemistry , Anisotropy , Crystallography, X-Ray , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Light , Luminescent Proteins/genetics , Microscopy, Polarization , Red Fluorescent Protein
20.
J Enzyme Inhib Med Chem ; 35(1): 1800-1810, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32962427

ABSTRACT

Human carbonic anhydrase IX (CA IX), a protein specifically expressed on the surface of solid tumour cells, represents a validated target both for anticancer therapy and diagnostics. We recently identified sulfonamide dicarbaboranes as promising inhibitors of CA IX with favourable activities both in vitro and in vivo. To explain their selectivity and potency, we performed detailed X-ray structural analysis of their interactions within the active sites of CA IX and CA II. Series of compounds bearing various aliphatic linkers between the dicarbaborane cluster and sulfonamide group were examined. Preferential binding towards the hydrophobic part of the active site cavity was observed. Selectivity towards CA IX lies in the shape complementarity of the dicarbaborane cluster with a specific CA IX hydrophobic patch containing V131 residue. The bulky side chain of F131 residue in CA II alters the shape of the catalytic cavity, disrupting favourable interactions of the spherical dicarbaborane cluster.


Subject(s)
Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Sulfonamides/chemistry , Amino Acid Sequence , Antigens, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Catalytic Domain , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Structure-Activity Relationship , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...