Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Oncotarget ; 7(5): 5273-88, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26672768

ABSTRACT

In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies.


Subject(s)
DNA Repair/genetics , Genes, p53/genetics , Osteosarcoma/genetics , Genes, Tumor Suppressor , Genomics , Humans , Osteosarcoma/pathology , Translocation, Genetic
2.
Stem Cells ; 32(10): 2780-93, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24898411

ABSTRACT

Differentiation of osteoblasts from mesenchymal stem cells (MSCs) is an integral part of bone development and homeostasis, and may when improperly regulated cause disease such as bone cancer or osteoporosis. Using unbiased high-throughput methods we here characterize the landscape of global changes in gene expression, histone modifications, and DNA methylation upon differentiation of human MSCs to the osteogenic lineage. Furthermore, we provide a first genome-wide characterization of DNA binding sites of the bone master regulatory transcription factor Runt-related transcription factor 2 (RUNX2) in human osteoblasts, revealing target genes associated with regulation of proliferation, migration, apoptosis, and with a significant overlap with p53 regulated genes. These findings expand on emerging evidence of a role for RUNX2 in cancer, including bone metastases, and the p53 regulatory network. We further demonstrate that RUNX2 binds to distant regulatory elements, promoters, and with high frequency to gene 3' ends. Finally, we identify TEAD2 and GTF2I as novel regulators of osteogenesis.


Subject(s)
Cell Differentiation/genetics , Osteogenesis/genetics , Alternative Splicing/genetics , Base Sequence , Binding Sites , Cell Lineage/genetics , Chromatin/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Epigenesis, Genetic , Genome, Human/genetics , Humans , Mesenchymal Stem Cells/cytology , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Dev Biol ; 380(2): 351-62, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23684812

ABSTRACT

Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Regulator , Zebrafish/embryology , Animals , Body Patterning , Gene Library , Transcription, Genetic , Zebrafish/genetics
4.
BMC Genomics ; 14: 105, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23414147

ABSTRACT

BACKGROUND: For safe clinical application of engineered cartilage made from mesenchymal stem cells (MSCs), molecular mechanisms for chondrogenic differentiation must be known in detail. Changes in gene expression and extracellular matrix synthesis have been extensively studied, but the epigenomic modifications underlying these changes have not been described. To this end we performed whole-genome chromatin immunoprecipitation and deep sequencing to quantify six histone modifications, reduced representation bisulphite sequencing to quantify DNA methylation and mRNA microarrays to quantify gene expression before and after 7 days of chondrogenic differentiation of MSCs in an alginate scaffold. To add to the clinical relevance of our observations, the study is based on primary bone marrow-derived MSCs from four donors, allowing us to investigate inter-individual variations. RESULTS: We see two levels of relationship between epigenetic marking and gene expression. First, a large number of genes ontogenetically linked to MSC properties and the musculoskeletal system are epigenetically prepatterned by moderate changes in H3K4me3 and H3K9ac near transcription start sites. Most of these genes remain transcriptionally unaltered. Second, transcriptionally upregulated genes, more closely associated with chondrogenesis, are marked by H3K36me3 in gene bodies, highly increased H3K4me3 and H3K9ac on promoters and 5' end of genes, and increased H3K27ac and H3K4me1 marking in at least one enhancer region per upregulated gene. Within the 7-day time frame, changes in promoter DNA methylation do not correlate significantly with changes in gene expression. Inter-donor variability analysis shows high level of similarity between the donors for this data set. CONCLUSIONS: Histone modifications, rather than DNA methylation, provide the primary epigenetic control of early differentiation of MSCs towards the chondrogenic lineage.


Subject(s)
Epigenesis, Genetic , Genome, Human , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Cell Lineage , Cells, Cultured , Chondrogenesis/genetics , DNA Methylation , Gene Expression Regulation , Histones/genetics , Humans , Promoter Regions, Genetic , Regulatory Elements, Transcriptional , Transcription Initiation Site
5.
Mol Cell Biol ; 32(19): 3814-22, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22801375

ABSTRACT

RUNX1 is known to be an essential transcription factor for generating hematopoietic stem cells (HSC), but much less is known about its role in the downstream process of hematopoietic differentiation. RUNX1 has been shown to be part of a large transcription factor complex, together with LDB1, GATA1, TAL1, and ETO2 (N. Meier et al., Development 133:4913-4923, 2006) in erythroid cells. We used a tagging strategy to show that RUNX1 interacts with two novel protein partners, LSD1 and MYEF2, in erythroid cells. MYEF2 is bound in undifferentiated cells and is lost upon differentiation, whereas LSD1 is bound in differentiated cells. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and microarray expression analysis were used to show that RUNX1 binds approximately 9,000 target sites in erythroid cells and is primarily active in the undifferentiated state. Functional analysis shows that a subset of the target genes is suppressed by RUNX1 via the newly identified partner MYEF2. Knockdown of Myef2 expression in developing zebrafish results in a reduced number of HSC.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental , Hematopoiesis , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases, N-Demethylating/metabolism , Repressor Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/genetics , DNA/metabolism , Gene Knockdown Techniques , Histone Demethylases , Mice , Morpholinos/administration & dosage , Morpholinos/genetics , Nerve Tissue Proteins/genetics , Protein Binding , Repressor Proteins/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
6.
Epigenetics Chromatin ; 5(1): 8, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22709888

ABSTRACT

BACKGROUND: CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear. RESULTS: Using immunohistochemistry on testis sections and fluorescence-based microscopy on intact live seminiferous tubules, we show that CTCFL is only transiently present during spermatogenesis, prior to the onset of meiosis, when the protein co-localizes in nuclei with ubiquitously expressed CTCF. CTCFL distribution overlaps completely with that of Stra8, a retinoic acid-inducible protein essential for the propagation of meiosis. We find that absence of CTCFL in mice causes sub-fertility because of a partially penetrant testicular atrophy. CTCFL deficiency affects the expression of a number of testis-specific genes, including Gal3st1 and Prss50. Combined, these data indicate that CTCFL has a unique role in spermatogenesis. Genome-wide RNA expression studies in ES cells expressing a V5- and GFP-tagged form of CTCFL show that genes that are downregulated in CTCFL-deficient testis are upregulated in ES cells. These data indicate that CTCFL is a male germ cell gene regulator. Furthermore, genome-wide DNA-binding analysis shows that CTCFL binds a consensus sequence that is very similar to that of CTCF. However, only ~3,700 out of the ~5,700 CTCFL- and ~31,000 CTCF-binding sites overlap. CTCFL binds promoters with loosely assembled nucleosomes, whereas CTCF favors consensus sites surrounded by phased nucleosomes. Finally, an ES cell-based rescue assay shows that CTCFL is functionally different from CTCF. CONCLUSIONS: Our data suggest that nucleosome composition specifies the genome-wide binding of CTCFL and CTCF. We propose that the transient expression of CTCFL in spermatogonia and preleptotene spermatocytes serves to occupy a subset of promoters and maintain the expression of male germ cell genes.

7.
EMBO J ; 31(4): 986-99, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22157820

ABSTRACT

The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.


Subject(s)
Chromatin/metabolism , Erythrocytes/metabolism , Proto-Oncogene Proteins c-myb/genetics , Transcription, Genetic , Chromatin Immunoprecipitation , Humans , Proto-Oncogene Mas
8.
Nat Genet ; 43(6): 607-11, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21532573

ABSTRACT

The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Anophthalmos/genetics , CHARGE Syndrome/genetics , Calcium-Binding Proteins/metabolism , Ear, Inner/metabolism , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Membrane Proteins/metabolism , Mice , Mutation , Receptors, Notch/metabolism , Serrate-Jagged Proteins
9.
Methods ; 53(2): 151-62, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20705139

ABSTRACT

Transcription factors (TFs) play a central role in the development of multicellular organisms. The sequential actions of critical TFs direct cells to adopt defined differentiation pathways leading to functional, fully differentiated tissues. Here, we describe a generic experimental pipeline that integrates biochemistry, genetics and next generation sequencing with bioinformatics to characterize TF complexes composition, function and target genes at a genome-wide scale. We show an application of this experimental pipeline which aims to unravel the molecular events taking place during hematopoietic cell differentiation.


Subject(s)
Cell Differentiation/genetics , Systems Biology/methods , Transcription Factors/physiology , Animals , Binding Sites , Chromatin Immunoprecipitation , Embryo, Mammalian/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression Regulation , Mice , Zebrafish/embryology
10.
Bioinformatics ; 26(18): i540-6, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20823319

ABSTRACT

MOTIVATION: The world-wide community of life scientists has access to a large number of public bioinformatics databases and tools, which are developed and deployed using diverse technologies and designs. More and more of the resources offer programmatic web-service interface. However, efficient use of the resources is hampered by the lack of widely used, standard data-exchange formats for the basic, everyday bioinformatics data types. RESULTS: BioXSD has been developed as a candidate for standard, canonical exchange format for basic bioinformatics data. BioXSD is represented by a dedicated XML Schema and defines syntax for biological sequences, sequence annotations, alignments and references to resources. We have adapted a set of web services to use BioXSD as the input and output format, and implemented a test-case workflow. This demonstrates that the approach is feasible and provides smooth interoperability. Semantics for BioXSD is provided by annotation with the EDAM ontology. We discuss in a separate section how BioXSD relates to other initiatives and approaches, including existing standards and the Semantic Web. AVAILABILITY: The BioXSD 1.0 XML Schema is freely available at http://www.bioxsd.org/BioXSD-1.0.xsd under the Creative Commons BY-ND 3.0 license. The http://bioxsd.org web page offers documentation, examples of data in BioXSD format, example workflows with source codes in common programming languages, an updated list of compatible web services and tools and a repository of feature requests from the community.


Subject(s)
Computational Biology/methods , Information Storage and Retrieval , Internet , Programming Languages , Amino Acid Sequence , Information Storage and Retrieval/standards , Molecular Sequence Data , Semantics , Software , Workflow
11.
Genes Dev ; 24(3): 277-89, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20123907

ABSTRACT

One of the complexes formed by the hematopoietic transcription factor Gata1 is a complex with the Ldb1 (LIM domain-binding protein 1) and Tal1 proteins. It is known to be important for the development and differentiation of the erythroid cell lineage and is thought to be implicated in long-range interactions. Here, the dynamics of the composition of the complex-in particular, the binding of the negative regulators Eto2 and Mtgr1-are studied, in the context of their genome-wide targets. This shows that the complex acts almost exclusively as an activator, binding a very specific combination of sequences, with a positioning relative to transcription start site, depending on the type of the core promoter. The activation is accompanied by a net decrease in the relative binding of Eto2 and Mtgr1. A Chromosome Conformation Capture sequencing (3C-seq) assay also shows that the binding of the Ldb1 complex marks genomic interaction sites in vivo. This establishes the Ldb1 complex as a positive regulator of the final steps of erythroid differentiation that acts through the shedding of negative regulators and the active interaction between regulatory sequences.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Erythroid Cells/cytology , Genome , Animals , Binding Sites , DNA-Binding Proteins/genetics , Erythroid Cells/metabolism , LIM Domain Proteins , Mice , Promoter Regions, Genetic , Transcription Factors , Tumor Cells, Cultured
12.
Nucleic Acids Res ; 38(Database issue): D167-80, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19920119

ABSTRACT

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.


Subject(s)
Amino Acid Motifs/genetics , Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Eukaryotic Cells/chemistry , Amino Acid Sequence , Animals , Computational Biology/trends , Databases, Protein , Humans , Information Storage and Retrieval/methods , Internet , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Software
13.
Genome Biol ; 10(4): R38, 2009.
Article in English | MEDLINE | ID: mdl-19374772

ABSTRACT

BACKGROUND: Genomic regulatory blocks (GRBs) are chromosomal regions spanned by highly conserved non-coding elements (HCNEs), most of which serve as regulatory inputs of one target gene in the region. The target genes are most often transcription factors involved in embryonic development and differentiation. GRBs often contain extensive gene deserts, as well as additional 'bystander' genes intertwined with HCNEs but whose expression and function are unrelated to those of the target gene. The tight regulation of target genes, complex arrangement of regulatory inputs, and the differential responsiveness of genes in the region call for the examination of fundamental rules governing transcriptional activity in GRBs. Here we use extensive CAGE tag mapping of transcription start sites across different human tissues and differentiation stages combined with expression data and a number of sequence and epigenetic features to discover these rules and patterns. RESULTS: We show evidence that GRB target genes have properties that set them apart from their bystanders as well as other genes in the genome: longer CpG islands, a higher number and wider spacing of alternative transcription start sites, and a distinct composition of transcription factor binding sites in their core/proximal promoters. Target gene expression correlates with the acetylation state of HCNEs in the region. Additionally, target gene promoters have a distinct combination of activating and repressing histone modifications in mouse embryonic stem cell lines. CONCLUSIONS: GRB targets are genes with a number of unique features that are the likely cause of their ability to respond to regulatory inputs from very long distances.


Subject(s)
Gene Expression Regulation , Genome, Human/genetics , Transcription, Genetic/genetics , Acetylation , Base Sequence , Cell Differentiation/genetics , Conserved Sequence , CpG Islands , Epigenesis, Genetic , Gene Regulatory Networks , Humans , Macrophages/cytology , Macrophages/metabolism , Models, Genetic , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid , Transcription Initiation Site
14.
Nucleic Acids Res ; 36(Database issue): D102-6, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18006571

ABSTRACT

JASPAR is a popular open-access database for matrix models describing DNA-binding preferences for transcription factors and other DNA patterns. With its third major release, JASPAR has been expanded and equipped with additional functions aimed at both casual and power users. The heart of the JASPAR database-the JASPAR CORE sub-database-has increased by 12% in size, and three new specialized sub-databases have been added. New functions include clustering of matrix models by similarity, generation of random matrices by sampling from selected sets of existing models and a language-independent Web Service applications programming interface for matrix retrieval. JASPAR is available at http://jaspar.genereg.net.


Subject(s)
Databases, Nucleic Acid , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Access to Information , Animals , Binding Sites , Computational Biology , Data Interpretation, Statistical , Humans , Internet , Models, Genetic , Promoter Regions, Genetic , RNA Splice Sites , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...