Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 5(5): 1204-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15732134

ABSTRACT

Strategies employing non-gel based methods for quantitative proteomic profiling such as isotope coded affinity tags coupled with mass spectrometry (ICAT-MS) are gaining attention as alternatives to two-dimensional gel electrophoresis (2-DE). We have conducted a large-scale investigation to determine the degree of reproducibility and depth of proteome coverage of a typical ICAT-MS experiment by measuring protein changes in Escherichia coli treated with triclosan, an inhibitor of fatty acid biosynthesis. The entire ICAT-MS experiment was conducted on four independent occasions where more than 24 000 peptides were quantitated using an ion-trap mass spectrometer. Our results demonstrated that quantitatively, the technique provided good reproducibility (median coefficient of variation of ratios was 18.6%), and on average identified more than 450 unique proteins per experiment. However, the method was strongly biased to detect acidic proteins (pI < 7), under-represented small proteins (<10 kDa) and failed to show clear superiority over 2-DE methods in monitoring hydrophobic proteins from cell lysates.


Subject(s)
Escherichia coli Proteins/analysis , Isotope Labeling/methods , Mass Spectrometry/methods , Proteome/analysis , Anti-Infective Agents, Local/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/analysis , Reproducibility of Results , Software , Triclosan/pharmacology
2.
Proteomics ; 3(10): 1912-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14625853

ABSTRACT

Quantitative proteomics investigates physiology at the molecular level by measuring relative differences in protein expression between samples under different experimental conditions. A major obstacle to reliably determining quantitative changes in protein expression is to overcome error imposed by technical variation and biological variation. In drug discovery and development the issue of biological variation often rises in concordance with the developmental stage of research, spanning from in vitro assays to clinical trials. In this paper we present case studies to raise awareness to the issues of technical variation and biological variation and the impact this places on applying quantitative proteomics. We defined the degree of technical variation from the process of two-dimensional electrophoresis as 20-30% coefficient of variation. On the other hand, biological variation observed experiment-to-experiment showed a broader degree of variation depending upon the sample type. This was demonstrated with case studies where variation was monitored across experiments with bacteria, established cell lines, primary cultures, and with drug treated human subjects. We discuss technical variation and biological variation as key factors to consider during experimental design, and offer insight into preparing experiments that overcome this challenge to provide statistically significant outcomes for conducting quantitative proteomic research.


Subject(s)
Proteome/analysis , Proteomics/methods , Animals , Bacterial Proteins/analysis , Blood Proteins/analysis , Blood Proteins/drug effects , Bone Marrow Cells/chemistry , Cell Line, Tumor/chemistry , Cells, Cultured , Data Interpretation, Statistical , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/chemistry , Humans , Image Processing, Computer-Assisted , Macrophages, Peritoneal/chemistry , Mice , Mice, Inbred BALB C , Proteins/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL