Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Bodyw Mov Ther ; 37: 142-145, 2024 01.
Article in English | MEDLINE | ID: mdl-38432796

ABSTRACT

BACKGROUND: Joint hypermobility is a spectrum of symptoms associated with connective tissue disorders. The main feature is the increased range of joint mobility. Hypermobility is rarely recognised in clinical practice. The diagnosis is based on the evaluation of diagnostic tests, mainly the Beighton score. The divergence of research methods means that patients do not receive a proper diagnosis and treatment. METHODS: The study used the Beighton score and the Sachse scale. Both tests are "all-or-none-tests". Non-parametric correlations were used to assess the concordance effect. To this end, two methods were adopted, i.e., the Spearman Rank Correlation and Kendall tau Rank Correlation. The values of correlation coefficients were calculated, respectively, rho and Kendall tau. The study involved 30 women working as fitness instructors. RESULTS: Consent results of hypermobility assessment for both methods were obtained in 3 cases, while the discrepancy in the hypermobility statement concerns measurements made in 10 participants. This cursory assessment already indicates a significant differentiation of results obtained for both methods. DISCUSSION: To the best of our knowledge, there are not many studies comparing different HSD diagnostic methods. The Beighton score is the most commonly used, but the selection of only 5 joints for the examination does not show the systemic nature of hypermobility. A reliable methodology should be based not only on goniometric measurements of selected joints. CONCLUSION: The expanded correlation analysis of Beighton and Sachse hypermobility tests indicates their poor compliance. Therefore, there is a need to standardise hypermobility spectrum disorder diagnostics, which may affect the objectification and credibility of these diagnostics.


Subject(s)
Joint Instability , Patient Compliance , Humans , Female , Exercise , Joint Instability/diagnosis , Range of Motion, Articular , Research Design
2.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978455

ABSTRACT

Bacteriophages (phages) are viruses infecting bacteria. They are widely present in the environment, food, and normal microflora. The human microbiome is a mutually interdependent network of bacteria, bacteriophages, and human cells. The stability of these tri-kingdom interactions may be essential for maintaining immunologic and metabolic health. Phages, as with each other's antigens, may evoke an immune response during a human's lifetime and induce specific antibody generation. In this manuscript, we labeled these antibodies as naturally generated. Naturally generated antibodies may be one of the most important factors limiting the efficacy of phage therapy. Herein, we attempted to determine the physiological level of these antibodies specific to a population bacteriophage named I11mO19 in human sera, using an ELISA-based assay. First, we purified the phage particles and assessed the immunoreactivity of phage proteins. Then, affinity chromatography was performed on columns with immobilized phage proteins to obtain a fraction of human polyclonal anti-phage antibodies. These antibodies were used as a reference to elaborate an immunoenzymatic test that was used to determine the level of natural anti-phage antibodies. We estimated the average level of anti-I11mO19 phage antibodies at 190 µg per one milliliter of human serum. However, immunoblotting revealed that cross-reactivity occurs between some proteins of I11mO19 and two other coliphages: T4 and ΦK1E. The antigens probably share common epitopes, suggesting that the determined level of anti-I11mO19 phage might be overestimated and reflects a group of antibodies reactive to a broad range of other E. coli phages. Anti-I11mO19 antibodies did not react with Pseudomonas bacteriophage F8, confirming specificity to the coliphage group. In this work, we wanted to show whether it is possible to determine the presence and level of anti-phage antibodies in nontargeted-immunized sera, using an immunoenzymatic assay. The conclusion is that it is possible, and specific antibodies can be determined. However, the specificity refers to a broader coliphage group of phages, not only the single phage strain.

3.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293202

ABSTRACT

Integrins are necessary for cell adhesion, migration, and positioning. Essential for inducing signalling events for cell survival, proliferation, and differentiation, they also trigger a variety of signal transduction pathways involved in mediating invasion, metastasis, and squamous-cell carcinoma. Several recent studies have demonstrated that the up- and down-regulation of the expression of αv and other integrins can be a potent marker of malignant diseases and patient prognosis. This review focuses on an arginine-glycine-aspartic acid (RGD)-dependent integrin αVß6, its biology, and its role in healthy humans. We examine the implications of αVß6 in cancer progression and the promotion of epithelial-mesenchymal transition (EMT) by contributing to the activation of transforming growth factor beta TGF-ß. Although αvß6 is crucial for proper function in healthy people, it has also been validated as a target for cancer treatment. This review briefly considers aspects of targeting αVß6 in the clinic via different therapeutic modalities.


Subject(s)
Integrin alphaV , Neoplasms , Humans , Aspartic Acid , Integrins/metabolism , Antigens, Neoplasm/metabolism , Transforming Growth Factor beta/metabolism , Neoplasms/therapy , Oligopeptides , Arginine , Glycine
4.
Antibiotics (Basel) ; 11(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35625199

ABSTRACT

In recent years, a number of bacterial detection methods have been developed to replace time-consuming culture methods. One interesting approach is to mobilize the ability of phage tail proteins to recognize and bind to bacterial hosts. In this paper, the authors provide an overview of the current methodologies in which phage proteins play major roles in detecting pathogenic bacteria. Authors focus on proteins capable of recognizing highly pathogenic strains, such as Acinetobacter baumannii, Campylobacter spp., Yersinia pestis, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus spp., Salmonella spp., and Shigella. These pathogens may be diagnosed by capture-based detection methods involving the use of phage protein-coated nanoparticles, ELISA (enzyme-linked immunosorbent assay)-based methods, or biosensors. The reviewed studies show that phage proteins are becoming an important diagnostic tool due to the discovery of new phages and the increasing knowledge of understanding the specificity and functions of phage tail proteins.

5.
Front Microbiol ; 13: 809724, 2022.
Article in English | MEDLINE | ID: mdl-35391726

ABSTRACT

Group B streptococcus (GBS) is one of the uropathogens that causes urinary tract infections (UTIs). The aims of this article were molecular characterization, an analysis of antimicrobial susceptibility profiles, adherence to bladder endothelial cells, and the detection of immunoreactive proteins of 94 clinical strains of GBS isolated from adult Polish patients with UTI. Antibiotic susceptibilities were determined by disk diffusion. Serotyping and Alp family genes detection were studied using multiplex PCR. Genetic profiles were determined by pulsed-field gel electrophoresis. The adherence ability of the studied strains was estimated by incubation on human bladder microvascular endothelial cell line. Immunoreactive proteins were studied by immunoblotting. Antibiotic susceptibility investigation revealed that 22% of GBS strains were resistant to erythromycin, whereas 18% demonstrated resistance to clindamycin. cMLSB was present in 76% of the resistant strains, M phenotype was detected in 14%, whereas iMLSB was present for 10%. The most common serotype was serotype III (31%), followed by serotype V (27%), and serotype Ia (17%). The genes that dominated among other Alp genes were: epsilon (29%), alp2 (27%), and rib (23%). The most common co-occurring serotypes and Alp genes were: Ia and epsilon, III and rib, III and alp2, V and alp2, and V and alp3 (p < 0.001). The PFGE method showed high clonality for serotype V and cMLSB (p < 001). The PFGE method showed high clonality for serotype V. Furthermore, this serotype was significantly associated with the cMLSB phenotype (p < 0.001). The most common immunoreactive proteins demonstrated masses of 50 kDa and 45-47 kDa. Although examined GBS isolates showed high genetic diversity, immunoreactive proteins were common for most of the studied GBS isolates, which may indicate their conservation, and allows to consider them as potential immunodiagnostic markers. Although the examined GBS isolates showed high genetic diversity, immunoreactive proteins were shared by most of the studied GBS isolates. It may indicate their conservation, thus allowing to consider them as potential immunodiagnostic markers.

6.
AMB Express ; 12(1): 1, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989907

ABSTRACT

Yersiniosis is an infectious zoonotic disease caused by two enteropathogenic species of Gram-negative genus Yersinia: Yersinia enterocolitica and Yersinia pseudotuberculosis. Pigs and other wild and domestic animals are reservoirs for these bacteria. Infection is usually spread to humans by ingestion of contaminated food. Yersiniosis is considered a rare disease, but recent studies indicate that it is overlooked in the diagnostic process therefore the infections with this bacterium are not often identified. Reliable diagnosis of Yersiniosis by culturing is difficult due to the slow growth of the bacteria easily overgrown by other more rapidly growing microbes unless selec-tive growth media is used. Phage adhesins recognizing bacteria in a specific manner can be an excellent diagnostic tool, es-pecially in the diagnosis of pathogens difficult for culturing. In this study, it was shown that Gp17, the tail fiber protein (TFP) of phage φYeO3-12, specifically recognizes only the pathogenic Yersinia enterocolitica serotype O:3 (YeO:3) bacteria. The ELISA test used in this work confirmed the specific interaction of this protein with YeO:3 and demonstrated a promising tool for developing the pathogen recognition method based on phage adhesins.

7.
Expert Rev Mol Diagn ; 21(9): 925-937, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34289786

ABSTRACT

INTRODUCTION: Examination of disease biomarkers mostly performed on crude materials, such as serum, meets some obstacles, resulting from sample complexity and the wide range of concentrations and sizes of the components. Techniques currently used in clinical diagnostics are usually time-consuming and expensive. The more sensitive and portable devices are needed for early diagnostics. Chemical sensors are devices that convert chemical information into parameters suitable for fast and precise processing and measurement. AREA COVERED: We review the use of biosensors and their possible application in early diagnostics of some diseases like cancer or viral infections. We focus on different types of biorecognition and some technical modifications, lowering the limit of detection potentially attractive to medical practitioners. EXPERT OPINION: Among the new diagnostic strategies, the use of biosensors is of increasing interest. In these techniques, the capture ligand interacts with the analyte of interest. Measuring interactions between partners in real time by surface plasmon resonance yields valuable information about kinetics and affinity in a short time and without labels. Importantly, the tendency in such techniques is to make biosensor devices smaller and the test results apparent with the naked eye, so they can be used in point-of-care medicine.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Humans , Point-of-Care Systems , Surface Plasmon Resonance/methods
8.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987777

ABSTRACT

For the first time, we are introducing TTPBgp12 and TFPgp17 as new members of the tail tubular proteins B (TTPB) and tail fiber proteins (TFP) family, respectively. These proteins originate from Yersinia enterocolitica phage φYeO3-12. It was originally thought that these were structural proteins. However, our results show that they also inhibit bacterial growth and biofilm formation. According to the bioinformatic analysis, TTPBgp12 is functionally and structurally similar to the TTP of Enterobacteria phage T7 and adopts a ß-structure. TFPgp17 contains an intramolecular chaperone domain at its C-terminal end. The N-terminus of TFPgp17 is similar to other representatives of the TFP family. Interestingly, the predicted 3D structure of TFPgp17 is similar to other bacterial S-layer proteins. Based on the thermal unfolding experiment, TTPBgp12 seems to be a two-domain protein that aggregates in the presence of sugars such as maltose and N-acetylglucosamine (GlcNAc). These sugars cause two unfolding events to transition into one global event. TFPgp17 is a one-domain protein. Maltose and GlcNAc decrease the aggregation temperature of TFPgp17, while the presence of N-acetylgalactosamine (GalNAc) increases the temperature of its aggregation. The thermal unfolding analysis of the concentration gradient of TTPBgp12 and TFPgp17 indicates that with decreasing concentrations, both proteins increase in stability. However, a decrease in the protein concentration also causes an increase in its aggregation, for both TTPBgp12 and TFPgp17.


Subject(s)
Caudovirales , Viral Structural Proteins , Yersinia enterocolitica/virology , Caudovirales/chemistry , Caudovirales/genetics , Caudovirales/metabolism , Protein Domains , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
9.
Front Microbiol ; 11: 1356, 2020.
Article in English | MEDLINE | ID: mdl-32636826

ABSTRACT

We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.

10.
Sci Rep ; 10(1): 4196, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144374

ABSTRACT

Tail Tubular Protein A (TTPA) was long thought to be strictly a structural protein of environmental bacteriophages. However, our recent work has suggested that some TTPAs have additional functional features and thus are dual-function proteins. This study introduces a new TTPA family member, TTPAgp11, which belongs to Yersinia phage phiYeO3-12. We cloned the gene, expressed it and then purified the phage protein. The protein, including its hydrolytic activity, was characterized. Our enzymatic activity tests showed that TTPAgp11 displayed hydrolytic activity towards Red-starch, suggesting that this enzyme could be classified as part as the α - 1, 4-glucosidase family. Protein folding and aggregation tests indicated that TTPAgp11 is a single-domain protein whose aggregation can be induced by maltose or N-acetylglucosamine. The spatial structure of TTPAgp11 seemed to resemble that of the first reported dual-function TTPA, TTPAgp31, which was isolated from Klebsiella pneumoniae phage 32.


Subject(s)
Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Bacteriophages/genetics , Genome, Viral/genetics , Hydrolysis , Molecular Sequence Data , Viral Proteins/genetics
11.
Sci Rep ; 9(1): 13487, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530875

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen with a capacity to develop antibiotic resistance, which underlies a larger proportion of hospital-acquired infections and higher morbidity and mortality, compared to other bacterial infections. Effective novel approaches for treatment of infections induced by this pathogen are therefore necessary. Phage therapy represents a promising alternative solution to eradicate antibiotic-resistant pathogens. Here, we investigated phage protein efficacy against multi-drug resistant (MDR) P. aeruginosa PAR21 and PAR50 strains isolated from diabetic foot ulcer patients. The results obtained using spot assay, zymography, spectrophotometry and scanning electron microscopy at low voltage (SEM-LV) indicate that the phage protein, PA-PP, exerts activity against P. aeruginosa PAR50 while having no impact on the PAR21 strain. Using LC-MS-MS/MS and comparative analysis of the peptide molecular mass with the protein sequence database, PA-PP was identified as a member of the serine protease family, a result corroborated by its ability to digest casein. We additionally showed a capacity of PA-PP to digest porin protein on the bacterial outer membrane (OM). Moreover, synergistic activity between PA-PP protein and piperacillin led to higher sensitivity of bacterial cells to this antibiotic. Our collective findings suggest that PA-PP targets porin protein on PAR50 OM, thereby increasing its sensitivity to specific antibiotics. The adverse effects observed on bacterial cells using SEM-LV suggest further roles of this protein that remain to be established.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Drug Resistance, Multiple, Bacterial , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Viral Proteins/metabolism , Enzyme Activation , Humans , Pseudomonas aeruginosa/ultrastructure , Recombinant Proteins , Spectrum Analysis
12.
J Mol Graph Model ; 92: 8-16, 2019 11.
Article in English | MEDLINE | ID: mdl-31302501

ABSTRACT

Bacteriophage base tailplate proteins were recently discovered to have hydrolytic activity towards disaccharides. The putative assignment of sugar binding sites was based on known lectin structures and identified residues a.a. 40-120 as the potential binding region for disaccharides [1]. To help verify the prediction, an in silico analysis was performed on the structure of a base tailplate protein gp31 from Klebsiella pneumoniae bacteriophage KP32 (PDB: 5MU4) which shows activity towards maltose but not trehalose [1]. Based on the information, a full surface docking was performed for both sugars which identified 2 regions different than originally predicted. The first region clearly favored maltose during the docking phase while the second one allowed for the energetically-equivalent binding of trehalose. To verify the assignment, a molecular dynamics simulation was performed to assess the stability of the docked substrates. MD simulations suggested that the first site included residues D131, D133, and E134, and was also superior for maltose binding while clearly disfavoring trehalose. Analysis of the putative catalytic mechanism suggested residues D131, D133 and E134 as critical for substrate binding. The residue D133 did participate in a stable substrate binding and was positioned near the scissile bond, potentially making it a catalytic residue. Catalytic residues were most likely D131 and D133, one of the two options proposed by Pyra et al. [1]. A comparison with known hydrolase mechanisms suggested that the enzyme most likely retains configuration during hydrolysis of maltose. The findings are discussed for other bacteriophage proteins regarding their potential specificities and catalytic mechanisms.


Subject(s)
Bacteriophages , Binding Sites , Models, Molecular , Sugars/chemistry , Viral Proteins/chemistry , Bacteriophages/metabolism , Bacteriophages/ultrastructure , Catalysis , Hydrolysis , Maltose/chemistry , Maltose/metabolism , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Substrate Specificity , Sugars/metabolism , Viral Proteins/metabolism
13.
Biosens Bioelectron ; 133: 8-15, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30903939

ABSTRACT

In this work we discussed a label-free biosensing application of long-period gratings (LPGs) optimized in refractive index (RI) sensitivity by deposition of thin tantalum oxide (TaOx) overlays. Comparing to other thin film and materials already applied for maximizing the RI sensitivity, TaOx offers good chemical and mechanical stability during its surface functionalization and other biosensing experiments. It was shown theoretically and experimentally that when RI of the overlay is as high as 2 in IR spectral range, for obtaining LPGs ultrasensitive to RI, the overlay's thickness must be determined with subnanometer precision. In this experiment the TaOx overlays were deposited using Atomic Layer Deposition method that allowed for achieving overlays with exceptionally well-defined thickness and optical properties. The TaOx nano-coated LPGs show RI sensitivity determined for a single resonance exceeding 11,500 nm/RIU in RI range nD= 1.335-1.345 RIU, as expected for label-free biosensing applications. Capability for detection of various in size biological targets, i.e., proteins (avidin) and bacteria (Escherichia coli), with TaOx-coated LPGs was verified using biotin and bacteriophage adhesin as recognition elements, respectively. It has been shown that functionalization process, as well as type of recognition elements and target analyte must be taken into consideration when the LPG sensitivity is optimized. In this work optimized approach made possible detection of small in size biological targets such as proteins with sensitivity reaching 10.21 nm/log(ng/ml).


Subject(s)
Avidin/isolation & purification , Biosensing Techniques , Escherichia coli/isolation & purification , Fiber Optic Technology , Nanoparticles , Oxides/chemistry , Refractometry , Tantalum/chemistry
14.
Mol Neurobiol ; 56(3): 1841-1851, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29936690

ABSTRACT

One of the most important scientific discoveries of recent years was the disclosure that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Scientists suggest that human gut microflora may even act as the "second brain" and be responsible for neurodegenerative disorders like Alzheimer's disease (AD). Although human-associated microbial communities are generally stable, they can be altered by common human actions and experiences. Enteric bacteria, commensal, and pathogenic microorganisms, may have a major impact on immune system, brain development, and behavior, as they are able to produce several neurotransmitters and neuromodulators like serotonin, kynurenine, catecholamine, etc., as well as amyloids. However, brain destructive mechanisms, that can lead to dementia and AD, start with the intestinal microbiome dysbiosis, development of local and systemic inflammation, and dysregulation of the gut-brain axis. Increased permeability of the gut epithelial barrier results in invasion of different bacteria, viruses, and their neuroactive products that support neuroinflammatory reactions in the brain. It seems that, inflammatory-infectious hypothesis of AD, with the great role of the gut microbiome, starts to gently push into the shadow the amyloid cascade hypothesis that has dominated for decades. It is strongly postulated that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. This is promising area for therapeutic intervention. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention, alter microbial partners and their products including amyloid protein, will probably become a new treatment for AD.


Subject(s)
Alzheimer Disease/microbiology , Gastrointestinal Microbiome , Inflammation/microbiology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Inflammation/metabolism
15.
Article in English | MEDLINE | ID: mdl-30333963

ABSTRACT

Three Streptococcus agalactiae (group B streptococci, GBS) immunoreactive proteins: enolase (47.4 kDa), inosine 5'-monophosphate dehydrogenase (IMPDH) (53 kDa) and molecular chaperone GroEL (57 kDa) were subjected to investigation. Enolase protein was described in our previous paper, whereas IMPDH and GroEL were presented for the first time. The aim of our paper was to provide mapping of specific epitopes, highly reactive with umbilical cord blood serum. Bioinformatic analyses allowed to select 32 most likely epitopes for enolase, 36 peptides for IMPDH and 41 immunoreactive peptides for molecular chaperone GroEL, which were synthesized by PEPSCAN. Ten peptides: two in enolase, one in IMPDH and seven in molecular chaperone GroEL have been identified as potentially highly selective epitopes that can be used as markers in rapid immunological diagnostic tests or constitute a component of an innovative vaccine against GBS infections.


Subject(s)
Chaperonin 60/immunology , Epitope Mapping , Epitopes/immunology , IMP Dehydrogenase/immunology , Phosphopyruvate Hydratase/immunology , Streptococcus agalactiae/immunology , Antibodies, Bacterial/blood , Computational Biology , Diagnostic Tests, Routine/methods , Immunoassay/methods , Streptococcal Infections/diagnosis
16.
Sensors (Basel) ; 18(9)2018 Sep 02.
Article in English | MEDLINE | ID: mdl-30200522

ABSTRACT

In designing a bacteria biosensor, various issues must be addressed: the specificity of bacteria recognition, the immobilization of biomolecules that act as the bacteria receptor, and the selectivity of sensor surface. The aim of this paper was to examine how the biofunctionalized surface of Ti, Au, and Ru metals reacts in contact with strains of Escherichia coli (E. coli). The focus on metal surfaces results from their future use as electrodes in high frequency biosensors, e.g., resonant circuits or transmission-line sections. First, the surfaces of different metals were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde or with 3-glycidylooxypropyltrimethoxysilane (GPTMS) followed by N-(5-amino-1-carboxypentyl) iminodiacetic acid (AB-NTA) and NiCl2. Secondly, the lipopolysaccharide binding protein (LBP), polyclonal anti-Escherichia coli antibody and bacteriophage protein gp37 were tested as bacteria receptors. The selectivity and specificity have been confirmed by the Enzyme-Linked Immunosorbent Assay (ELISA) and visualized by scanning electron microscopy at low landing energies. We noticed that LBP, polyclonal antibody, and gp37 were successfully immobilized on all studied metals and recognized the E. coli bacteria selectively. However, for the antibody, the highest reactivity was observed when Ti surface was modified, whereas the bacteria binding was comparable between LBP and gp37 on the functionalized Ru surfaces, independent from modification. Thus, all surfaces were biocompatible within the scope of biosensor functionality, with titanium functionalization showing the best performance.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Escherichia coli/isolation & purification , Gold/chemistry , Ruthenium/chemistry , Titanium/chemistry , Electrodes , Enzyme-Linked Immunosorbent Assay
17.
Sci Rep ; 8(1): 10935, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30026546

ABSTRACT

The interaction between the T4 bacteriophage gp37 adhesin and the bacterial lipopolysaccharide (LPS) is a well-studied system, however, the affinity and strength of the interaction haven't been analyzed so far. Here, we use atomic force microscopy to determine the strength of the interaction between the adhesin and its receptor, namely LPS taken from a wild strain of E. coli B. As negative controls we used LPSs of E. coli O111:B and Hafnia alvei. To study the interaction an AFM tip modified with the gp37 adhesin was used to scan surfaces of mica covered with one of the three different LPSs. Using the correlation between the surface topography images and the tip-surface interaction we could verify the binding between the specific LPS and the tip in contrast to the very weak interaction between the tip and the non-binding LPSs. Using force spectroscopy we could then measure the binding strength by pulling on the AFM tip until it lifted off from the surface. The force necessary to break the interaction between gp37 and LPS from E. coli B, LPS from E. coli O111:B and LPS from H. alvei were measured to be 70 ± 29 pN, 46 ± 13 pN and 45 ± 14 pN, respectively. The latter values are likely partially due to non-specific interaction between the gp37 and the solid surface, as LPS from E. coli O111:B and LPS from H. alvei have been shown to not bind to gp37, which is confirmed by the low correlation between binding and topography for these samples.


Subject(s)
Bacteria/metabolism , Bacteriophage T4/metabolism , Lipopolysaccharides/metabolism , Viral Envelope Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hafnia alvei/metabolism , Kinetics , Lipopolysaccharides/chemistry , Microscopy, Atomic Force , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Protein Binding , Viral Envelope Proteins/chemistry
18.
Front Microbiol ; 9: 125, 2018.
Article in English | MEDLINE | ID: mdl-29467739

ABSTRACT

The elongation factor Tu has been identified as one of the most immunoreactive proteins that was recognized by human sera of GBS (group B streptococcus) positive patients. In this paper, we present the polypeptide-specific epitopes of the bacterial protein that are recognized by human antibodies: 28LTAAITTVLARRLP41 (peptide no. 3) and 294GQVLAKPGSINPHTKF309 (peptide no. 21). To determine the shortest amino acid sequence recognized by antibodies, truncation peptide libraries were prepared using the PEPSCAN method. The analysis of immunoreactivity of peptides with sera of GBS positive and negative women revealed that the most immunoreactive sequence was 306HTKF309. Moreover, we observed that this sequence also showed the highest specificity which was based on ratio of reactivity with sera of GBS positive relative to sera of GBS negative patients. Epitope was synthetized on Wang resin with the Fmoc strategy. Our results open the possibility to use 306HTKF309 peptide in diagnostic assays to determine Streptococcus agalactiae infection in humans.

19.
Sci Rep ; 7(1): 18048, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273737

ABSTRACT

In this paper, the enzymatic activity, substrate specificity and antibiofilm feature of bacteriophage dual-function tail proteins are presented. So far, tail tubular proteins A-TTPAgp31 and TTPAgp44-have been considered as structural proteins of Klebsiella pneumoniae bacteriophages KP32 and KP34, respectively. Our results show that TTPAgp31 is able to hydrolyze maltose as well as Red-starch. The activity of 1 µM of the protein was calculated as 47.6 milli-Units/assay relating to the α-amylase activity. It degrades capsular polysaccharides (cPS), slime polysaccharides (sPS) and lipopolysaccharide (LPS) of K. pneumoniae PCM 2713 and shows antibiofilm reactivity towards S. aureus PCM 519 and E. faecalis PCM 2673. TTPAgp44 hydrolyses trehalose and cPS of E. faecium PCM 1859. TTPAgp44's activity was also observed in the antibiofilm test against P. aeruginosa PCM 2710 and B. subtilis PCM 2021. TTPAgp31 has been identified as α-1,4-glucosidase whereas, TTPAgp44 exhibits trehalase-like activity. Both proteins contain aspartate and glutamate residues in the ß-stranded region which are essential for catalytic activity of glycoside hydrolases. The significant novelty of our results is that for the first time the bacteriophage tubular proteins are described as the unique enzymes displaying no similarity to any known phage hydrolases. They can be used as antibacterial agents directed against bacterial strains producing exopolysaccharides and forming a biofilm.


Subject(s)
Bacteriophages/metabolism , Klebsiella pneumoniae/virology , Maltose/metabolism , Polysaccharides/metabolism , Viral Tail Proteins/metabolism , Biofilms , Hydrolysis
20.
Sci Rep ; 7(1): 2223, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28533535

ABSTRACT

Tail tubular protein A (TTPA) is a structural tail protein of Klebsiella pneumoniae bacteriophage KP32, and is responsible for adhering the bacteriophage to host cells. For the first time, we found that TTPA also exhibits lytic activity towards capsular exopolysaccharide (EPS) of the multiresistant clinical strain of Klebsiella pneumoniae, PCM2713, and thus should be regarded as a dual-function macromolecule that exhibits both structural and enzymatic actions. Here, we present our crystallographic and enzymatic studies of TTPA. TTPA was crystallized and X-ray diffraction data were collected to a resolution of 1.9 Å. In the crystal, TTPA molecules were found to adopt a tetrameric structure with α-helical domains on one side and ß-strands and loops on the other. The novel crystal structure of TTPA resembles those of the bacteriophage T7 tail protein gp11 and gp4 of bacteriophage P22, but TTPA contains an additional antiparallel ß-sheet carrying a lectin-like domain that could be responsible for EPS binding. The enzymatic activity of TTPA may reflect the presence of a peptidoglycan hydrolase domain in the α-helical region (amino acid residues 126 to 173). These novel results provide new insights into the enzymatic mechanism through which TTPA acts on polysaccharides.


Subject(s)
Bacteriophages/metabolism , Klebsiella pneumoniae/virology , Viral Proteins/metabolism , Amino Acid Sequence , Bacteriophages/genetics , Hydrolysis , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...