Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Life Sci ; 18(1): 20220764, 2023.
Article in English | MEDLINE | ID: mdl-38027230

ABSTRACT

In the rapidly evolving landscape of agricultural technology, image processing has emerged as a powerful tool for addressing critical agricultural challenges, with a particular focus on the identification and management of crop diseases. This study is motivated by the imperative need to enhance agricultural sustainability and productivity through precise plant health monitoring. Our primary objective is to propose an innovative approach combining support vector machine (SVM) with advanced image processing techniques to achieve precise detection and classification of fig leaf diseases. Our methodology encompasses a step-by-step process, beginning with the acquisition of digital color images of diseased leaves, followed by denoising using the mean function and enhancement through Contrast-limited adaptive histogram equalization. The subsequent stages involve segmentation through the Fuzzy C Means algorithm, feature extraction via Principal Component Analysis, and disease classification, employing Particle Swarm Optimization (PSO) in conjunction with SVM, Backpropagation Neural Network, and Random Forest algorithms. The results of our study showcase the exceptional performance of the PSO SVM algorithm in accurately classifying and detecting fig leaf disease, demonstrating its potential for practical implementation in agriculture. This innovative approach not only underscores the significance of advanced image processing techniques but also highlights their substantial contributions to sustainable agriculture and plant disease mitigation. In conclusion, the integration of image processing and SVM-based classification offers a promising avenue for advancing crop disease management, ultimately bolstering agricultural productivity and global food security.

2.
Sensors (Basel) ; 21(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300561

ABSTRACT

Wireless Sensor Networks (WSNs) continue to face two major challenges: energy and security. As a consequence, one of the WSN-related security tasks is to protect them from Denial of Service (DoS) and Distributed DoS (DDoS) attacks. Machine learning-based systems are the only viable option for these types of attacks, as traditional packet deep scan systems depend on open field inspection in transport layer security packets and the open field encryption trend. Moreover, network data traffic will become more complex due to increases in the amount of data transmitted between WSN nodes as a result of increasing usage in the future. Therefore, there is a need to use feature selection techniques with machine learning in order to determine which data in the DoS detection process are most important. This paper examined techniques for improving DoS anomalies detection along with power reservation in WSNs to balance them. A new clustering technique was introduced, called the CH_Rotations algorithm, to improve anomaly detection efficiency over a WSN's lifetime. Furthermore, the use of feature selection techniques with machine learning algorithms in examining WSN node traffic and the effect of these techniques on the lifetime of WSNs was evaluated. The evaluation results showed that the Water Cycle (WC) feature selection displayed the best average performance accuracy of 2%, 5%, 3%, and 3% greater than Particle Swarm Optimization (PSO), Simulated Annealing (SA), Harmony Search (HS), and Genetic Algorithm (GA), respectively. Moreover, the WC with Decision Tree (DT) classifier showed 100% accuracy with only one feature. In addition, the CH_Rotations algorithm improved network lifetime by 30% compared to the standard LEACH protocol. Network lifetime using the WC + DT technique was reduced by 5% compared to other WC + DT-free scenarios.


Subject(s)
Computer Communication Networks , Wireless Technology , Algorithms , Cluster Analysis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...