Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 30(35): e1801556, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30019415

ABSTRACT

The discovery of a new type-II Dirac semimetal in Ir1-x Ptx Te2 with optimized band structure is described. Pt dopants protect the crystal structure holding the Dirac cones and tune the Fermi level close to the Dirac point. The type-II Dirac dispersion in Ir1-x Ptx Te2 is confirmed by angle-resolved photoemission spectroscopy and first-principles calculations. Superconductivity is also observed and persists when the Fermi level aligns with the Dirac points. Ir1-x Ptx Te2 is an ideal platform for further studies on the exotic properties and potential applications of type-II DSMs, and opens up a new route for the investigation of the possible topological superconductivity and Majorana physics.

2.
Nat Commun ; 7: 13643, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917858

ABSTRACT

The recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in MoxW1-xTe2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probe ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that MoxW1-xTe2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making MoxW1-xTe2 a promising platform for transport and optics experiments on Weyl semimetals.

SELECTION OF CITATIONS
SEARCH DETAIL