Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Diabetes Metab J ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38650100

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.

2.
Nano Lett ; 24(17): 5371-5378, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647348

ABSTRACT

Artificial synapses and bionic neurons offer great potential in highly efficient computing paradigms. However, complex requirements for specific electronic devices in neuromorphic computing have made memristors face the challenge of process simplification and universality. Herein, reconfigurable Ag/HfO2/NiO/Pt memristors are designed for feasible switching between volatile and nonvolatile modes by compliance current controlled Ag filaments, which enables stable and reconfigurable synaptic and neuronal functions. A neuromorphic computing system effectively replicates the biological synaptic weight alteration and continuously accomplishes excitation and reset of artificial neurons, which consist of bionic synapses and artificial neurons based on isotype Ag/HfO2/NiO/Pt memristors. This reconfigurable electrical performance of the Ag/HfO2/NiO/Pt memristors takes advantage of simplified hardware design and delivers integrated circuits with high density, which exhibits great potency for future neural networks.

3.
Anal Chem ; 96(12): 4825-4834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38364099

ABSTRACT

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Immunoassay , Colorimetry , Gold/chemistry , Vanadium , Antibodies , Limit of Detection
4.
Endocrine ; 84(1): 1-15, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227168

ABSTRACT

Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Diabetes Mellitus, Type 2/metabolism , Brain-Gut Axis , Brain/metabolism , Homeostasis
5.
Article in English | MEDLINE | ID: mdl-38265909

ABSTRACT

Sensory information transmitted to the brain activates neurons to create a series of coping behaviors. Understanding the mechanisms of neural computation and reverse engineering the brain to build intelligent machines requires establishing a robust relationship between stimuli and neural responses. Neural decoding aims to reconstruct the original stimuli that trigger neural responses. With the recent upsurge of artificial intelligence, neural decoding provides an insightful perspective for designing novel algorithms of brain-machine interface. For humans, vision is the dominant contributor to the interaction between the external environment and the brain. In this study, utilizing the retinal neural spike data collected over multi trials with visual stimuli of two movies with different levels of scene complexity, we used a neural network decoder to quantify the decoded visual stimuli with six different metrics for image quality assessment establishing comprehensive inspection of decoding. With the detailed and systematical study of the effect and single and multiple trials of data, different noise in spikes, and blurred images, our results provide an in-depth investigation of decoding dynamical visual scenes using retinal spikes. These results provide insights into the neural coding of visual scenes and services as a guideline for designing next-generation decoding algorithms of neuroprosthesis and other devices of brain-machine interface.

6.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240634

ABSTRACT

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

7.
Mikrochim Acta ; 191(1): 50, 2023 12 23.
Article in English | MEDLINE | ID: mdl-38141100

ABSTRACT

A sensitive immunochromatographic assay (ICA) using time-resolved fluorescence microspheres (TRFMs) coupled with an indirect-labeling mode was developed for simultaneously determining 22 kinds of ß-lactams in milk samples. The TRFMs labeled anti-receptor monoclonal antibodies (mAbs) conjugated to penicillin-binding proteins (PBPs) as ternary TRFMs-mAb-PBPs (TMP) nanoscaffolds provide excellent solubility, brightness, and stability. Thanks to the fact that they not only fully expose the binding sites of PBPs, thereby enhancing the biological affinity of PBPs towards the target, but also generated superb fluorescence signals, the versatile TMP manifested unique possibilities as efficient probes for ICA with remarkable enhancement in sensitivity in ß-lactams screening. The results showed that the standard curves of the 22 varying ß-lactams displayed linearity in their respective concentration ranges (R2 > 0.98), with the cutoff values of 1-100 ng/mL. The constructed TMP-ICA was successfully applied to the analysis of real milk, with consistent results compared with liquid chromatography-tandem mass spectrometry (LC-MS), providing an effective method for sensing ß-lactams in food matrices.


Subject(s)
Penicillins , beta-Lactams , Animals , beta-Lactams/analysis , Penicillins/analysis , Penicillin-Binding Proteins , Milk/chemistry , Microspheres , Antibodies/analysis , Immunoassay
8.
Mikrochim Acta ; 191(1): 42, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114730

ABSTRACT

To avoid false negative results due to the low cross-reactivity rate (CR) in rapid immunoassay, a group-specific antibody with homogeneous CR toward target compounds is needed for accuracy. In this study, tylosin (TYL) and tilmicosin (TM) were selected as model molecules. Firstly, two-dimensional similarity, electrostatic potential energy, spatial conformation and charge distribution of the haptens TYL-CMO, TYL-6-ACA, TYL-4-APA, TYL-CHO and DES-CMO and target compounds of TYL and TM were obtained using Gaussian 09W and Discovery Studio. The optimal hapten was DES-CMO because it is the most similar to TYL and TM. Subsequently, the mAb 14D5 cell line was obtained with IC50 values of 1.59 and 1.72 ng/mL for TYL and TM, respectively, and a CR of 92.44%. Finally, amorphous carbon nanoparticles (ACNPs) were conjugated with mAb 14D5 to develop an accurate lateral flow immunoassay (LFA) for detection of TYL and TM by the reflectance value under natural light. The recoveries of TYL and TM ranged from 77.18 to 112.04% with coefficient of variation < 13.43%. The cut-off value in milk samples was 8 ng/mL, and the limits of detection were 11.44, 15.96, 22.29 and 25.53 µg/kg for chicken muscle, bovine muscle, porcine muscle and porcine liver samples, respectively, and the results being consistent with HPLC-UV. The results suggest that the developed LFA is accurate and potentially useful for on-site screening of TYL and TM in milk and animal tissue samples.


Subject(s)
Antibodies, Monoclonal , Tylosin , Animals , Cattle , Swine , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Haptens
9.
Front Pharmacol ; 14: 1269233, 2023.
Article in English | MEDLINE | ID: mdl-37829301

ABSTRACT

Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/ß-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.

10.
Anal Chem ; 95(42): 15531-15539, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37753722

ABSTRACT

Improving the sensitivity of immunochromatographic assays (ICAs) lies in the signal strength and probe activity of the labeled tracers, and the color properties and structure of the labeled tracers are key factors affecting the biological activity. In this study, cerium vanadate (CeVO4) of different sizes and shapes (230, 1058, and 710 nm) was synthesized to investigate its impact on the performance of ICA for T-2 detection. The prepared CeVO4 possessed outstanding stability, a large specific surface area, superior biocompatibility, and high compatibility with T-2 mAb (affinity constant was 3.14 × 108 M-1). As labeling probes for competitive ICA, the results showed that 1058 nm of CeVO4 as labels exhibited the best detection performance, with a limit of detection (LOD) of 0.079 ng/mL, which was substantially 19-fold less than the average of gold nanoparticle ICA. Additionally, CeVO4-ICA was effectively used to detect T-2 toxin, and the recovery rate for spiking corn and oatmeal samples was determined to be 81.27-115.44% (relative standard deviation <9.16%). The above information demonstrates the efficiency and applicability of CeVO4-ICA as a technique for quick and thorough identification of T-2 toxin residues in food.

11.
Anal Chem ; 95(45): 16585-16592, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37774142

ABSTRACT

Nanomaterials-based immunochromatographic assays (ICAs) are of great significance in point-of-care testing (POCT), yet it remains challenging to explore low background platforms and high chromogenic intensity probes to improve detection performance. Herein, we reported a low interference and high signal-to-noise ratio fluorescent ICA platform based on ultrabright persistent luminescent nanoparticles (PLNPs) Zn2GeO4: Mn, which could produce intense photoluminescence at 254 nm excitation to reduce background interference from ICA substrates and samples. The prepared immunosensor was successfully applied in T-2 toxin detection with a remarkable limit of detection of 0.025 ng/mL, which was 22-fold more sensitive compared with that of traditional gold nanoparticles. Ultimately, a portable 3D-printed detection device equipped with a smartphone analyzing application was fabricated for quantitative readout in POCT, achieving favorable recoveries in practical sample detection. This work provides a creative attempt for ultrabright PLNP-based low background ICA, and it also guarantees its feasibility in practical POCT.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes , Gold , Metal Nanoparticles/chemistry , Immunoassay/methods , Coloring Agents , Limit of Detection
12.
Anal Chem ; 95(24): 9237-9243, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37232263

ABSTRACT

Nanozymes have drawn much attention as an enzyme mimetic with low cost and stability in enhancing analytical performance. Herein, a peroxidase-mimicking nanozyme-improved enzyme-linked immunosorbent assay (ELISA) was developed employing the bimetallic PdRu nanozyme to replace the natural enzymes as a catalytic carrier for the sensing of Escherichia coli O157:H7 (E. coli O157:H7). The PdRu nanozyme displayed ultrahigh catalytic activity, possessing a catalytic rate that was 5-fold higher than horseradish peroxidase (HRP). In addition, PdRu exhibited great biological affinity with antibody (affinity constant was about 6.75 × 1012 M) and high stability. All those advantages ensure the successful establishment and the construction of a novel colorimetric biosensor for E. coli O157:H7 detection. PdRu-based ELISA not only achieved an ultrasensitive detection sensitivity (8.7 × 102 CFU/mL) by approximately 288-fold as compared to the traditional HRP-based ELISA and also possessed satisfactory specificity and reproducibility (relative standard deviation (RSD) < 10%). Furthermore, the feasibility of PdRu-ELISA was further evaluated by detecting E. coli O157:H7 in actual samples with satisfactory recoveries, indicating its potential for applications in bioassays and clinical diagnostics.


Subject(s)
Escherichia coli O157 , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay , Antibodies, Bacterial , Horseradish Peroxidase
13.
Front Pediatr ; 11: 1134923, 2023.
Article in English | MEDLINE | ID: mdl-37252042

ABSTRACT

Background: As more than 500,000 neonates participate in newborn congenital hypothyroidism (CH) screening in Guangxi Zhuang Autonomous Region each year, the overall number of false-positive (FP) cases has increased. We aim to assess the parental stress in parents of neonates with FP CH results in Guangxi, find out the influence factors related to demographics, and provide the basis for personalized health education. Methods: The parents of neonates with FP CH results were invited to participate in the FP group, and the parents of neonates with all negative results were invited to participate in the control group. The parents completed a questionnaire on demographics, knowledge of CH, and the parental stress index (PSI) in the hospital for the first time. The follow-up visits for PSI were conducted 3, 6, and 12 months afterward through telephone and online. Results: A total of 258 and 1,040 parents participated in the FP and control groups, respectively. The parents in the FP group had better knowledge of CH and higher PSI scores than the parents in the control group. The result of logistic regression showed that the major influence factors related to the knowledge of CH were FP experience and source of knowledge. The parents in the FP group who were well-informed during the recall phone call had lower PSI scores than the other parents. The parents in the FP group showed decreasing PSI scores gradually in follow-up visits. Conclusion: The results suggested that FP screening results may affect parental stress and parent-child relationship. FP results increased the stress on the parents and increased their knowledge of CH passively.

14.
Biosens Bioelectron ; 229: 115239, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965382

ABSTRACT

Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.


Subject(s)
Biosensing Techniques , Salmonella enteritidis , Reproducibility of Results , Immunoassay/methods , Antibodies , Limit of Detection
15.
Anal Chem ; 95(12): 5275-5284, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36898021

ABSTRACT

Owing to its high throughput, simplicity, and rapidity, enzyme-linked immunosorbent assay (ELISA) has attracted much attention in the field of immunoassays. However, the traditional ELISA usually affords a single signal readout and the labeling ability of the enzyme used is poor, resulting in low accuracy and a limited detection range. Herein, a vanadium nanospheres (VNSs)-mediated competitive ratio nanozymes-linked immunosorbent assay (VNSs-RNLISA) was created for the sensitive detection of the T-2 toxin (T-2). As the key to the biosensor, the VNSs with superoxide dismutase-like and peroxidase-like dual-enzyme mimetic activities were synthesized by a one-step hydrothermal method, which oxidized 1,1-diphenyl-2-picryl-hydrazyl fading and catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) color development. Therefore, T-2 could not only be qualitatively measured with the naked eye but also be quantitatively evaluated by monitoring the ratio of absorbance at 450 and 517 nm wavelengths. Moreover, the characterization of a VNSs-labeled antibody probe showed strong dual-enzymatic activity, excellent stability, and high affinity with T-2 [the affinity constant (ka) was approximately 1.36 × 108 M-1], which can significantly improve the detection sensitivity. The limit of detection of VNSs-RNLISA was 0.021 ng/mL, which was approximately 27-fold more sensitive than the single signal nanozymes-linked immunosorbent assay (0.561 ng/mL). Besides, the change in the ratio of absorbance (Δ450/Δ517) decreased linearly in a range of 0.22-13.17 ng/mL, outperforming the detection range of a single-mode nano-enzyme-linked immunosorbent assay using TMB by a factor of 1.6 times. Furthermore, the VNSs-RNLISA was successfully used to identify T-2 in maize and oat samples, with recoveries ranging from 84.216 to 125.371%. Overall, this tactic offered a promising platform for the quick detection of T-2 in food and might broaden the application range of the enzyme-linked immunosorbent assay.


Subject(s)
Biosensing Techniques , Nanospheres , T-2 Toxin , Immunoassay/methods , Vanadium , Immunosorbents , Limit of Detection
16.
Food Chem ; 418: 135948, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36944309

ABSTRACT

Designing efficient and sensitive methods for the detection of nitrofurantoin (NFT) residues is of great importance for food safety and environmental protection. Herein, a composite with cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube (N/Co@CNTs@CC-II) was synthesized by in-situ growth and sublimation-gas phase transformation strategy and used to establish an ultrasensitive electrochemical sensor for NFT determination. The N/Co@CNTs@CC-II sensor exhibits uniform N doping, fine hollow structure, and abundant active metal sites, which lays a solid foundation for the ultra-sensitive detection of NFT. Benefiting from these advantages, the N/Co@CNTs@CC-II exhibits excellent sensitivity (8.19 µA µM-1 cm-2) and low detection limit (18.41 nM) for NFT detection. The practical feasibility of N/Co@CNTs@CC-II was also demonstrated by the determination of NFT in milk and tap water samples. This study may open up new opportunities for the application of N-doped carbon nanotube materials encapsulating transition metals.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Cobalt/chemistry , Nanotubes, Carbon/chemistry , Nitrofurantoin , Metal Nanoparticles
17.
J Hazard Mater ; 447: 130777, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36689901

ABSTRACT

Developing electrode materials with excellent electrocatalytic properties for detecting pesticide residues plays a vital role in the safety of agricultural products and environmental applications. Herein, we designed a new electrochemical sensor on the basis of N-doped carbon hollow nanospheres modified with Sn/MoC Schottky junction (Sn/MoC@NC) for methyl parathion (MP) detection. The Sn/MoC@NC was prepared by self-assembled polymerization-anchoring strategy and high-temperature carbonization design. Sn/MoC Schottky junction and hollow nanosphere structure endow Sn/MoC@NC with a larger surface area, more active sites, and faster electron transfer, which is beneficial to enhancing its electrocatalytic performance. The structural characterizations and physicochemical properties of Sn/MoC@NC were explored through various microscopy, spectroscopic and electrochemical techniques. The experimental results confirmed that the calibration curve for current and MP concentration (0.05-10 µg/mL) was available under optimized conditions, and the sensitivity and detection limit were respectively determined to be 9.02 µA µM1 cm2 and 8.9 ng/mL. Furthermore, the constructed sensor displayed excellent selectivity, repeatability, and stability, which qualified it for use in detecting MP in grapes and tap water with satisfactory recovery. This work may provide some interesting prospects for constructing high-performance electrocatalysts for MP detection.

18.
Biosens Bioelectron ; 219: 114807, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36327557

ABSTRACT

Apart from the obvious benefit of "trash-to-treasure", the acquisition of natural nanomaterials from cheap and renewable waste has been intensively researched because of various bioactivities and physical-chemical features. Herein, for the first time, we employed natural cuttlefish ink nanoparticles (CINPs) as a multifunctional label and designed colorimetric-photothermal dual-mode lateral flow immunoassays (CINPs-mediated CPLFIA) for sensitive detection of clenbuterol (CL). The accessibility and renewability of CINPs overcome barriers that artificial nanomaterials face, such as complex manufacturing and relatively high costs. Additionally, inspired by the mussel adhesion, the bio-affinity of CINPs, such as antibody coupling and preservation, was investigated and showed to be considerably superior to Au NPs, leading to significantly increased immunosensor sensitivity. Meanwhile, CINPs exhibit excellent photothermal conversion efficiency for dual-signal production, avoiding the effect of environmental elements (particularly light) for colorimetric mode. Besides, the biosensor was integrated with a smartphone and a thermal imager for portable sensing. After optimization, the detection limit of CINPs-mediated CPLFIA was 0.179 ng mL-1 (colorimetric mode) and 0.076 ng mL-1 (photothermal mode), which were significantly lower than traditional gold nanoparticles-based LFIA (0.786 ng mL-1). This research attempted to explain the rise in sensitivity. From food waste to food supervision, this research explores the hidden value of natural resources.

19.
Environ Technol ; 44(25): 3897-3910, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35543664

ABSTRACT

The remediation of dyes in wastewater using activated carbon produced from sewage sludge pyrolysis char (PYC) is an environmentally friendly and sustainable process. However, traditional activators can cause corrosion of the processing facility, thereby increasing the costs of waste disposal. Here, activated carbons were prepared from sewage sludge PYC, and the effects of activation conditions (different activators, temperature and time, and char:activator mass ratio) on their specific surface areas and adsorption of iodine and methylene blue (MB; model dye) were studied. The results showed that a value of 952 m2/g could be attained for the specific surface area and values of 882 and 162 mg/g for the adsorption of iodine and MB, respectively, by heating PYC with KHCO3 (PYC- KHCO3: 1:2 w/w) for 60 min at 800 ℃. Compared with activation by KOH, the adsorption of MB using PYC-KHCO3 was slightly lower but the yield was 13.7% higher. Optimization of the activation process using surface response modelling indicated that sensitivity of three key factors to the adsorption of iodine and MB followed the order: Mass ratio > temperature > time. Systematic investigation of the effects of time, pH and temperature on the removal of MB by the activated carbon revealed that adsorption conformed to the Langmuir model and pseudo-second-order kinetics. The proposed mechanisms of MB adsorption involved ion exchange, functional group complexation and physical/π-π interactions. This study provides a basis for the efficient remediation of dyes in wastewater using activated carbon prepared from sustainable sewage sludge PYC and green chemistry.


Subject(s)
Iodine , Water Pollutants, Chemical , Water Purification , Sewage , Wastewater , Charcoal , Coloring Agents , Water Purification/methods , Adsorption , Methylene Blue , Kinetics
20.
Food Chem ; 401: 134131, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36103740

ABSTRACT

In this work, a highly sensitive immunochromatographic test strip (ITS) based on Scandium-Tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework nanocubes (ScTMNs) was developed for ultrasensitive and facile visual determination of imidacloprid (IDP). TCPP as the porphyrin-based planar ligand and Sc3+ as the metal center were applied to form the ScTMNs via coordination chelation. Giving the credit to its excellent optical characteristics, strong affinity with monoclonal antibodies, and favorable biocompatibility, the ScTMNs was selected as a signal tag. Under optimized conditions, the ITS exhibited a great liner relationship in the range of 0.04-3 ng/mL and the detection limit was 0.04 ng/mL for the IDP detection. Additionally, IDP was successfully detected in tomatoes, millet, corn and carrot samples with satisfied recoveries. To the best of our knowledge, this is the first time that ScTMNs have been used in immunochromatography which are expected to have potential applications in detection of other substances.


Subject(s)
Metal-Organic Frameworks , Porphyrins , Antibodies, Monoclonal , Chromatography, Affinity/methods , Food Contamination/analysis , Immunoassay , Ligands , Limit of Detection , Metal-Organic Frameworks/analysis , Scandium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...