Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 134(3): 226-232, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35764446

ABSTRACT

Plant-based probiotic beverages have gained increasing interest due to demand from health-conscious consumers. In this study, we aimed to isolate and screen lactic acid bacteria possessing functional properties for use as a starter culture of fermented almond and coix beverages. Lactiplantibacillus plantarum L42g isolated from fermented beef was selected. Both intact cells and cell free supernatant of this strain exhibited high antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging at 38.2% and 44.9%, respectively. L. plantarum L42g grown in MRS broth supplemented with 1% (w v-1) monosodium glutamate (MSG) produced a large amount of γ-aminobutyric acid (GABA) at 496.7 µg mL-1. Moreover, strain L42g displayed remarkable antibacterial activity against several potential foodborne bacterial pathogens, including Bacillus cereus, Listeria monocytogenes, Listeria inocua, Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Shigella sp., Vibrio cholerae and Vibrio parahaemolyticus. Strain L42g also possessed additional probiotic properties including abilities to tolerate gastrointestinal conditions, adhere to gut mucosa, co-aggregate with pathogens, be susceptible to antibiotics, and produce protease. Probiotic strain L42g was subsequently employed in fermenting almond and coix juices containing MSG (1%) supplementation. Levels of antioxidant, GABA and antibacterial formation along with cell growth were clearly higher in fermented almond juice than in fermented coix juice. Nonetheless, both fermented almond and coix juices meet the standards required for the consumption of fermented beverages. Therefore, L. plantarum strain L42g represents a promising starter culture for producing functional plant-based probiotic beverages.


Subject(s)
Antioxidants , Probiotics , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Cattle , Fermentation , Fermented Beverages , Sodium Glutamate/metabolism , gamma-Aminobutyric Acid
2.
J Biosci Bioeng ; 132(4): 423-428, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34253465

ABSTRACT

A mixed culture of probiotics, one from the genus Bacillus and one lactic acid bacterium (LAB), was developed to be used as a feed additive for enhancing growth, innate immunity and disease resistance in Pangasius bocourti. From our earlier work, three probiotic Bacillus species, Bacillus siamensis B44v, Bacillus sp. B51f and Bacillus aerius B81e, and three probiotic LABs, Streptococcus lutetiensis L7c, Lactiplantibacillus paraplantarum (synonym. Lactobacillus paraplantarum) L34b-2 and Lactiplantibacillus plantarum (synonym. Lactobacillus plantarum) L42g, were selected for comparison. These bacteria, which express probiotic properties including bacteriocin-like activity against Aeromonas hydrophila, were subjected to in vivo screening in hybrid catfish (Clarias macrocephalus × Clarias gariepinus). A 30-day feed-trial followed by a challenge test in screening experiments resulted in the prominent B. aerius B81e and L. paraplantarum L34b-2 being selected. A mixture of these bacteria was added to a diet for P. bocourti. After 60-day feeding, the fish fed with mixed probiotics had weight gain, specific growth rate and feed conversion ratio improved significantly (p < 0.01) when compared to the control. Both humoral and cellular immunity were significantly higher in probiotic-fed fish. Following the 60-day feeding experiment, P. bocourti fed with the diet containing mixed probiotics had a higher survival rate than the control fish after injection with a virulent A. hydrophila. It can be concluded that a combination of B. aerius strain B81e and L. paraplantarum strain L34b-2 markedly improved growth performance, innate immunity and disease resistance of P. bocourti.


Subject(s)
Bacillus , Catfishes , Probiotics , Animal Feed/analysis , Animals , Diet , Disease Resistance , Immunity, Innate , Lactobacillus , Streptococcus
SELECTION OF CITATIONS
SEARCH DETAIL
...