Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroinformatics ; 22(1): 45-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924429

ABSTRACT

BOLD-based fMRI is the most widely used method for studying brain function. The BOLD signal while valuable, is beset with unique vulnerabilities. The most notable of these is the modest signal to noise ratio, and the relatively low temporal and spatial resolution. However, the high dimensional complexity of the BOLD signal also presents unique opportunities for functional discovery. Topological Data Analyses (TDA), a branch of mathematics optimized to search for specific classes of structure within high dimensional data may provide particularly valuable applications. In this investigation, we acquired fMRI data in the anterior cingulate cortex (ACC) using a basic motor control paradigm. Then, for each participant and each of three task conditions, fMRI signals in the ACC were summarized using two methods: a) TDA based methods of persistent homology and persistence landscapes and b) non-TDA based methods using a standard vectorization scheme. Finally, using machine learning (with support vector classifiers), classification accuracy of TDA and non-TDA vectorized data was tested across participants. In each participant, TDA-based classification out-performed the non-TDA based counterpart, suggesting that our TDA analytic pipeline better characterized task- and condition-induced structure in fMRI data in the ACC. Our results emphasize the value of TDA in characterizing task- and condition-induced structure in regional fMRI signals. In addition to providing our analytical tools for other users to emulate, we also discuss the unique role that TDA-based methods can play in the study of individual differences in the structure of functional brain signals in the healthy and the clinical brain.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain/diagnostic imaging , Gyrus Cinguli , Data Analysis
2.
Patterns (N Y) ; 2(11): 100367, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34820649

ABSTRACT

Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20-30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.

3.
Front Artif Intell ; 4: 668395, 2021.
Article in English | MEDLINE | ID: mdl-34268488

ABSTRACT

We apply topological data analysis to the behavior of C. elegans, a widely studied model organism in biology. In particular, we use topology to produce a quantitative summary of complex behavior which may be applied to high-throughput data. Our methods allow us to distinguish and classify videos from various environmental conditions and we analyze the trade-off between accuracy and interpretability. Furthermore, we present a novel technique for visualizing the outputs of our analysis in terms of the input. Specifically, we use representative cycles of persistent homology to produce synthetic videos of stereotypical behaviors.

4.
Stat Appl Genet Mol Biol ; 15(1): 19-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26812805

ABSTRACT

Persistent homology captures the evolution of topological features of a model as a parameter changes. The most commonly used summary statistics of persistent homology are the barcode and the persistence diagram. Another summary statistic, the persistence landscape, was recently introduced by Bubenik. It is a functional summary, so it is easy to calculate sample means and variances, and it is straightforward to construct various test statistics. Implementing a permutation test we detect conformational changes between closed and open forms of the maltose-binding protein, a large biomolecule consisting of 370 amino acid residues. Furthermore, persistence landscapes can be applied to machine learning methods. A hyperplane from a support vector machine shows the clear separation between the closed and open proteins conformations. Moreover, because our approach captures dynamical properties of the protein our results may help in identifying residues susceptible to ligand binding; we show that the majority of active site residues and allosteric pathway residues are located in the vicinity of the most persistent loop in the corresponding filtered Vietoris-Rips complex. This finding was not observed in the classical anisotropic network model.


Subject(s)
Models, Molecular , Proteins/chemistry , Algorithms , Binding Sites , Catalytic Domain , Models, Statistical , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Proteins/metabolism
5.
Inf Process Med Imaging ; 21: 386-97, 2009.
Article in English | MEDLINE | ID: mdl-19694279

ABSTRACT

We present a novel framework for characterizing signals in images using techniques from computational algebraic topology. This technique is general enough for dealing with noisy multivariate data including geometric noise. The main tool is persistent homology which can be encoded in persistence diagrams. These diagrams visually show how the number of connected components of the sublevel sets of the signal changes. The use of local critical values of a function differs from the usual statistical parametric mapping framework, which mainly uses the mean signal in quantifying imaging data. Our proposed method uses all the local critical values in characterizing the signal and by doing so offers a completely new data reduction and analysis framework for quantifying the signal. As an illustration, we apply this method to a 1D simulated signal and 2D cortical thickness data. In case of the latter, extra homological structures are evident in an control group over the autistic group.


Subject(s)
Algorithms , Autistic Disorder/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL