Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; : 114344, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815873

ABSTRACT

We report an intriguing example of enantioselectivity in the formation of new multicomponent crystalline solid containing vinpocetine and malic acid. Several experimental data sets confirmed that the multicomponent system presents a clear enantiospecific crystallisation behaviour both in the solid-state and in solution: only the system consisting of vinpocetine and L-malic acid produces a free-flowing solid consisting of a new crystalline form, while the experiments with D-malic acid produced an amorphous and often deliquescent material. The new vinpocetine-L-malic system crystallizes in the monoclinic space group of P21 and in a 1:1 M ratio, where the two molecules are linked through intermolecular hydrogen bonds in the asymmetric unit. The vinpocetine-DL-malic system was partially crystalline (with also traces of unreacted vinpocetine) with diffraction peaks corresponding to those of vinpocetine-L-malic acid. Solid-state NMR experiments revealed strong ionic interactions in all the three systems. However, while vinpocetine-L-malic acid system was a pure and crystalline phase, in the other two systems the presence of unreacted vinpocetine was always detected. This resulted in a significant worsening of the dissolution profile with respect to vinpocetine-L-malic pure crystalline salt, whose dissolution kinetics appeared superior.

2.
Catal Sci Technol ; 14(9): 2390-2399, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38721397

ABSTRACT

Transaminase enzymes are well established biocatalysts that are used in chemical synthesis due to their beneficial sustainability profile, regio- and stereoselectivity and substrate specificity. Here, the use of a wild-type Chromobacterium violaceum transaminase (CvTAm) in enzyme cascades revealed the formation of a novel hydroxystyryl pyridine product. Subsequent studies established it was a transaminase mediated reaction where it was exhibiting apparent aldolase reactivity. This promiscuous enzyme reaction mechanism was then explored using other wild-type transaminases and via the formation of CvTAm mutants. Application of one pot multi-step enzyme cascades was subsequently developed to produce a range of hydroxystyryl pyridines.

3.
Nanomaterials (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786829

ABSTRACT

Seeing the atomic configuration of single organic nanoparticles at a sub-Å spatial resolution by transmission electron microscopy has been so far prevented by the high sensitivity of soft matter to radiation damage. This difficulty is related to the need to irradiate the particle with a total dose of a few electrons/Å2, not compatible with the electron beam density necessary to search the low-contrast nanoparticle, to control its drift, finely adjust the electron-optical conditions and particle orientation, and finally acquire an effective atomic-resolution image. On the other hand, the capability to study individual pristine nanoparticles, such as proteins, active pharmaceutical ingredients, and polymers, with peculiar sensitivity to the variation in the local structure, defects, and strain, would provide advancements in many fields, including materials science, medicine, biology, and pharmacology. Here, we report the direct sub-ångström-resolution imaging at room temperature of pristine unstained crystalline polymer-based nanoparticles. This result is obtained by combining low-dose in-line electron holography and phase-contrast imaging on state-of-the-art equipment, providing an effective tool for the quantitative sub-ångström imaging of soft matter.

4.
Nature ; 630(8015): 40-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778187
5.
Chempluschem ; : e202400055, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713896

ABSTRACT

The conformational preferences of N-((6-methylpyridin-2-yl)carbamothioyl)benzamide were studied in solution, the gas phase and the solid state via a combination of NMR, density functional theory (DFT) and single crystal X-ray techniques. This acyl thiourea derivative can adopt two classes of low energy conformation, each stabilized by a different 6-membered intramolecular hydrogen bond (IHB) pseudoring. Analysis in different solvents revealed that the conformational preference of this molecule is polarity dependent, with increasingly polar environments yielding a higher proportion of the minor conformer containing an NH⋅⋅⋅N IHB. The calculated barrier to interconversion is consistent with dynamic behaviour at room temperature, despite the propensity of 6-membered IHB pseudorings to be static. This work demonstrates that introducing competitive IHB pathways can render static IHBs more dynamic and that such systems could have potential as chameleons in drug design.

6.
Science ; 383(6685): 911-918, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38386754

ABSTRACT

Coenzyme A (CoA) is essential to all life on Earth, and its functional subunit, pantetheine, is important in many origin-of-life scenarios, but how pantetheine emerged on the early Earth remains a mystery. Earlier attempts to selectively synthesize pantetheine failed, leading to suggestions that "simpler" thiols must have preceded pantetheine at the origin of life. In this work, we report high-yielding and selective prebiotic syntheses of pantetheine in water. Chemoselective multicomponent aldol, iminolactone, and aminonitrile reactions delivered spontaneous differentiation of pantoic acid and proteinogenic amino acid syntheses, as well as the dihydroxyl, gem-dimethyl, and ß-alanine-amide moieties of pantetheine in dilute water. Our results are consistent with a role for canonical pantetheine at the outset of life on Earth.


Subject(s)
Coenzyme A , Origin of Life , Pantetheine , Coenzyme A/chemistry , Pantetheine/chemical synthesis , Water/chemistry , Nitriles/chemistry , Hydroxybutyrates/chemical synthesis , 4-Butyrolactone/chemical synthesis , Amino Acids/chemical synthesis
7.
Inorg Chem ; 63(1): 416-430, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38101319

ABSTRACT

Bismuth-based coordination complexes are advantageous over other metal complexes, as bismuth is the heaviest nontoxic element with high spin-orbit coupling and potential optoelectronics applications. Herein, four bismuth halide-based coordination complexes [Bi2Cl6(phen-thio)2] (1), [Bi2Br6(phen-thio)2] (2), [Bi2I6(phen-thio)2] (3), and [Bi2I6(phen-Me)2] (4) were synthesized, characterized, and subjected to detailed photophysical studies. The complexes were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and NMR studies. Spectroscopic analyses of 1-4 in solutions of different polarities were performed to understand the role of the organic and inorganic components in determining the ground- and excited-state properties of the complexes. The photophysical properties of the complexes were characterized by ground-state absorption, steady-state photoluminescence, microsecond time-resolved photoluminescence, and absorption spectroscopy. Periodic density functional theory (DFT) calculations were performed on the solid-state structures to understand the role of the organic and inorganic parts of the complexes. The studies showed that changing the ancillary ligand from chlorine (Cl) and bromine (Br) to iodine (I) bathochromically shifts the absorption band along with enhancing the absorption coefficient. Also, changing the halides (Cl, Br to I) affects the photoluminescent quantum yields of the ligand-centered (LC) emissive state without markedly affecting the lifetimes. The combined results confirmed that ground-state properties are strongly influenced by the inorganic part, and the lower-energy excited state is LC. This study paves the way to design novel bismuth coordination complexes for optoelectronic applications by rigorously choosing the ligands and bismuth salt.

8.
Chem Sci ; 14(47): 13743-13754, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075666

ABSTRACT

Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised "clickable" pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.

9.
J Am Chem Soc ; 145(19): 10712-10720, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37133417

ABSTRACT

Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on."

10.
Angew Chem Int Ed Engl ; 62(19): e202212688, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36617841

ABSTRACT

Crystal engineering has exclusively focused on the development of advanced materials based on small organic molecules. We now demonstrate how the cocrystallization of a polymer yields a material with significantly enhanced thermal stability but equivalent mechanical flexibility. Isomorphous replacement of one of the cocrystal components enables the formation of solid solutions with melting points that can be readily fine-tuned over a usefully wide temperature range. The results of this study credibly extend the scope of crystal engineering and cocrystallization from small molecules to polymers.

11.
Chem Sci ; 12(9): 3264-3269, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-34164095

ABSTRACT

We demonstrate that liquid additives can exert inhibitive or prohibitive effects on the mechanochemical formation of multi-component molecular crystals, and report that certain additives unexpectedly prompt the dismantling of such solids into physical mixtures of their constituents. Computational methods were employed in an attempt to identify possible reasons for these previously unrecognised effects of liquid additives on mechanochemical transformations.

12.
Chemistry ; 26(64): 14645-14653, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32706515

ABSTRACT

Co-crystallisation is widely explored as a route to improve the physical properties of pharmaceutical active ingredients, but little is known about the fundamental mechanisms of the process. Herein, we apply a hyphenated differential scanning calorimetry-X-ray diffraction technique to mimic the commercial hot melt extrusion process, and explore the heat-induced synthesis of a series of new co-crystals containing isonicotinamide. These comprise a 1:1 co-crystal with 4-hydroxybenzoic acid, 2:1 and 1:2 systems with 4-hydroxyphenylacetic acid and a 1:1 crystal with 3,4-dihydroxyphenylactic acid. The formation of co-crystals during heating is complex mechanistically. In addition to co-crystallisation, conversions between polymorphs of the co-former starting materials and co-crystal products are also observed. A subsequent study exploring the use of inkjet printing and milling to generate co-crystals revealed that the synthetic approach has a major effect on the co-crystal species and polymorphs produced.

13.
J Org Chem ; 85(1): 207-214, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31682123

ABSTRACT

Intermolecular interactions play a fundamental role on the performance of conjugated materials in organic electronic devices, as they heavily influence their optoelectronic properties. Synthetic control over the solid state properties of organic optoelectronic materials is crucial to access real life applications. Perylene diimides (PDIs) are one of the most highly studied classes of organic fluorescent dyes. In the solid state, π-π stacking suppresses their emission, limiting their use in a variety of applications. Here, we report the synthesis of a novel PDI dye that is encapsulated by four alkylene straps. X-ray crystallography indicates that intermolecular π-π stacking is completely suppressed in the crystalline state. This is further validated by the photophysical properties of the dye in both solution and solid state and supported by theoretical calculations. However, we find that the introduction of the encapsulating "arms" results in the creation of charge-transfer states which modify the excited state properties. This article demonstrates that molecular encapsulation can be used as a powerful tool to tune intermolecular interactions and thereby gain an extra level of control over the solid state properties of organic optoelectronic materials.

14.
ACS Appl Mater Interfaces ; 11(12): 11618-11626, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30830741

ABSTRACT

Metal-organic frameworks (MOFs) have shown great promise for sensing of dangerous chemicals, including environmental toxins, nerve agents, and explosives. However, challenges remain, such as the sensing of larger analytes and the discrimination between similar analytes at different concentrations. Herein, we present the synthesis and development of a new, large-pore MOF for explosives sensing and demonstrate its excellent sensitivity against a range of relevant explosive compounds including trinitrotoluene and pentaerythritol tetranitrate. We have developed an improved, thorough methodology to eliminate common sources of error in our sensing protocol. We then combine this new MOF with two others as part of a three-MOF array for luminescent sensing and discrimination of five explosives. This sensor works at part-per-million concentrations and, importantly, can discriminate explosives with high accuracy without reference to their concentration.

15.
Nat Commun ; 9(1): 4073, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30287815

ABSTRACT

Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.


Subject(s)
Arabinonucleosides/biosynthesis , Origin of Life , Mercaptopurine , Oxidation-Reduction , Photochemical Processes
16.
J Am Chem Soc ; 140(5): 1622-1626, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29337534

ABSTRACT

We present the synthesis and characterization of a series of encapsulated diketopyrrolopyrrole red-emitting conjugated polymers. The novel materials display extremely high fluorescence quantum yields in both solution (>70%) and thin film (>20%). Both the absorption and emission spectra show clearer, more defined features compared to their naked counterparts demonstrating the suppression of inter and intramolecular aggregation. We find that the encapsulation results in decreased energetic disorder and a dramatic increase in backbone colinearity as evidenced by scanning tunnelling microscopy. This study paves the way for diketopyrrolopyrrole to be used in emissive solid state applications and demonstrates a novel method to reduce structural disorder in conjugated polymers.

17.
J Org Chem ; 83(5): 2495-2503, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29241011

ABSTRACT

Herein, we report a silver-free Pd(II)-catalyzed C(sp3)-H arylation of saturated bicyclic and tricyclic amine scaffolds. The reaction provides good yields using a range of aryl iodides and aryl bromides including functionalized examples bearing aldehydes, ketones, esters, free phenols, and heterocycles. The methodology has been applied to medicinally relevant scaffolds. Two of the intermediate palladium complexes in the catalytic cycle have been prepared and characterized, and a mechanism is proposed. Removal of the directing group proceeded with good yield under relatively mild conditions.

18.
Nat Commun ; 8: 15270, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28524845

ABSTRACT

Understanding prebiotic nucleotide synthesis is a long standing challenge thought to be essential to elucidating the origins of life on Earth. Recently, remarkable progress has been made, but to date all proposed syntheses account separately for the pyrimidine and purine ribonucleotides; no divergent synthesis from common precursors has been proposed. Moreover, the prebiotic syntheses of pyrimidine and purine nucleotides that have been demonstrated operate under mutually incompatible conditions. Here, we tackle this mutual incompatibility by recognizing that the 8-oxo-purines share an underlying generational parity with the pyrimidine nucleotides. We present a divergent synthesis of pyrimidine and 8-oxo-purine nucleotides starting from a common prebiotic precursor that yields the ß-ribo-stereochemistry found in the sugar phosphate backbone of biological nucleic acids. The generational relationship between pyrimidine and 8-oxo-purine nucleotides suggests that 8-oxo-purine ribonucleotides may have played a key role in primordial nucleic acids prior to the emergence of the canonical nucleotides of biology.


Subject(s)
Prebiotics , Purines/chemistry , Pyrimidines/chemistry , Ribonucleotides/chemistry , Stereoisomerism , Furans/chemistry , Oxazoles/chemistry , Pentoses/chemistry , Phosphorylation , Purine Nucleotides/chemistry , Sugars/chemistry , Thiones/chemistry
19.
Org Biomol Chem ; 14(34): 8039-43, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27506186

ABSTRACT

Two new palladium-catalysed reactions have been developed for the synthesis of stable 4-substituted benzooxaborinin-1-ols. A palladium-catalysed cyclisation of ortho-alkenylbenzene boronic acids can be used to access 4-chlorobenzooxaborinin-1-ols via a Wacker-type oxidation and chlorination. Alternatively, ortho-alkynylbenzene boronic acids undergo a palladium-catalysed oxyallylation reaction to provide 4-allylbenzooxaborinin-1-ols.

20.
Chemistry ; 22(29): 10065-73, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27303817

ABSTRACT

Fluorescein is known to exist in three tautomeric forms defined as quinoid, zwitterionic, and lactoid. In the solid state, the quinoid and zwitterionic forms give rise to red and yellow materials, respectively. The lactoid form has not been crystallized pure, although its cocrystal and solvate forms exhibit colors ranging from yellow to green. An explanation for the observed colors of the crystals is found using a combination of UV/Vis spectroscopy and plane-wave DFT calculations. The role of cocrystal coformers in modifying crystal color is also established. Several new crystal structures are determined using a combination of X-ray and electron diffraction, solid-state NMR spectroscopy, and crystal structure prediction (CSP). The protocol presented herein may be used to predict color properties of materials prior to their synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...