Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(5): e0125225, 2015.
Article in English | MEDLINE | ID: mdl-25932952

ABSTRACT

Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated with changes in neuropeptide expression and function, including vasoactive intestinal peptide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; however, VIP's role in development and maintenance of colonic epithelial barrier homeostasis is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP's role in epithelial barrier homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier homeostasis were assessed in wildtype (WT) and VIPKO mice, at baseline. Colitic responses were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate (DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice exhibited distorted colonic crypts, defects in epithelial cell proliferation and migration, increased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil factor 3. These changes were associated with reduced expression of caudal type homeobox 2 (Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced colitis were more severe in VIPKO than WT mice. VIP treatment rescued the phenotype, protecting VIPKO mice against DSS colitis, with results comparable to WT mice. In conclusion, VIP plays a crucial role in the development and maintenance of colonic epithelial barrier integrity under physiological conditions and promotes epithelial repair and homeostasis during colitis.


Subject(s)
Colitis/prevention & control , Homeostasis/drug effects , Intestines/pathology , Protective Agents/pharmacology , Vasoactive Intestinal Peptide/metabolism , Animals , CDX2 Transcription Factor , Cell Count , Colitis/pathology , Dinitrofluorobenzene/analogs & derivatives , Disease Susceptibility , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Goblet Cells/pathology , Homeodomain Proteins/metabolism , Intestines/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Transcription Factors/metabolism , Vasoactive Intestinal Peptide/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...