Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(7): eade4814, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800428

ABSTRACT

Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.


Subject(s)
Polyadenylation , Zebrafish , Animals , Humans , Infant, Newborn , 3' Untranslated Regions , Exons , Introns/genetics , Zebrafish/genetics , Embryo, Nonmammalian
2.
Pediatr Dermatol ; 40(2): 352-354, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36334031

ABSTRACT

Gaucher disease is a rare lysosomal storage disorder caused by a deficiency in glucocerebrosidase. This enzyme deficiency leads to the accumulation of toxic metabolites in various organs. Multiple subtypes of this disease have been described; however, the perinatal-lethal form is extremely rare and challenging to diagnose. We present a case of a newborn girl with ichthyosis, petechiae, and arthrogryposis, later found to be homozygous for a pathogenic variant of the glucocerebrosidase gene. This case highlights the potential role of dermatologists in the recognition of this rare disease.


Subject(s)
Arthrogryposis , Gaucher Disease , Ichthyosis, Lamellar , Ichthyosis , Purpura , Infant, Newborn , Pregnancy , Female , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Arthrogryposis/complications , Ichthyosis/genetics , Gaucher Disease/genetics , Gaucher Disease/pathology , Ichthyosis, Lamellar/complications
3.
Genet Med ; 22(11): 1838-1850, 2020 11.
Article in English | MEDLINE | ID: mdl-32694869

ABSTRACT

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.


Subject(s)
Blepharophimosis , Hypotrichosis , Intellectual Disability , Facies , Foot Deformities, Congenital , Humans , Intellectual Disability/genetics , Phenotype , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...