Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 3: 1028, 2012.
Article in English | MEDLINE | ID: mdl-22929785

ABSTRACT

Spin-transfer torques offer great promise for the development of spin-based devices. The effects of spin-transfer torques are typically analysed in terms of adiabatic and non-adiabatic contributions. Currently, a comprehensive interpretation of the non-adiabatic term remains elusive, with suggestions that it may arise from universal effects related to dissipation processes in spin dynamics, while other studies indicate a strong influence from the symmetry of magnetization gradients. Here we show that enhanced magnetic imaging under dynamic excitation can be used to differentiate between non-adiabatic spin-torque and extraneous influences. We combine Lorentz microscopy with gigahertz excitations to map the orbit of a magnetic vortex core with <5 nm resolution. Imaging of the gyrotropic motion reveals subtle changes in the ellipticity, amplitude and tilt of the orbit as the vortex is driven through resonance, providing a robust method to determine the non-adiabatic spin torque parameter ß=0.15±0.02 with unprecedented precision, independent of external effects.

2.
Opt Lett ; 37(14): 2994-6, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825203

ABSTRACT

We demonstrate the first real-space recording of nanoscale dynamic interactions using single-shot soft x-ray (SXR) full-field laser microscopy. A sequence of real-space flash images acquired with a table-top SXR laser was used to capture the motion of a rapidly oscillating magnetic nanoprobe. Changes of 30 nm in the oscillation amplitude were detected when the nanoprobe was made to interact with stray fields from a magnetic sample. The table-top visualization of nanoscale dynamics in real space can significantly contribute to the understanding of nanoscale processes and can accelerate the development of new nanodevices.

3.
Phys Rev Lett ; 99(26): 267201, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-18233600

ABSTRACT

A magnetic vortex in a restricted geometry possesses a nondegenerate translational excitation that corresponds to circular motion of its core at a characteristic frequency. For 40-nm thick, micron-sized permalloy elements, we find that the translational-mode microwave absorption peak splits into two peaks that differ in frequency by up to 25% as the driving field is increased. An analysis of micromagnetic equations shows that for large driving fields two stable solutions emerge.

4.
Phys Rev Lett ; 97(6): 067201, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-17026196

ABSTRACT

The effect of imprinting symmetric and displaced vortex structures into an antiferromagnetic material is investigated in micron-sized disks consisting of exchange coupled ferromagnetic-antiferromagnetic bilayers. The imprint of displaced vortices manifests itself by the occurrence of a new type of asymmetric hysteresis loops characterized by curved, reversible, central sections with nonzero remanent magnetization. Such an imprint is achieved by cooling the disks through the blocking temperature of the system in small fields. Micromagnetic simulations reveal that asymmetric vortexlike loops naturally result from the competition between the different energies involved in the system.

5.
Phys Rev Lett ; 95(6): 067201, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090982

ABSTRACT

Submicron, circular, ferromagnetic-antiferromagnetic dots exhibit different magnetization reversal mechanisms depending on the direction of the magnetic applied field. Shifted, constricted hysteresis loops, typical for vortex formation, are observed for fields along the exchange bias direction. However, for fields applied close to perpendicular to the exchange bias direction, magnetization reversal occurs via coherent rotation. Magnetic force microscopy imaging together with micromagnetic simulations are used to further clarify the different magnetic switching behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...