Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Urol Case Rep ; 54: 102748, 2024 May.
Article in English | MEDLINE | ID: mdl-38756527

ABSTRACT

Uric acid is one of the few kidney stone minerals that can dissolve using oral alkalinization therapies such as potassium citrate. We report an obese female whose recalcitrant uric acid stones were eliminated using the weight loss medication phentermine/topiramate (Qsymia), a metabolic stimulant and carbonic anhydrase inhibitor. Pre- and post-dissolution 24-h urine studies and computed tomography images are included with a proposed mechanism of action of this medication. This is the first description of a non-alkaline oral therapy used alone for uric acid stone dissolution. Additional investigation of this medication in obese or diabetic uric acid stone formers is warranted.

3.
PLoS One ; 18(12): e0294498, 2023.
Article in English | MEDLINE | ID: mdl-38100464

ABSTRACT

BACKGROUND: Between 5-10% of patients discontinue statin therapy due to statin-associated adverse reactions, primarily statin associated muscle symptoms (SAMS). The absence of a clear clinical phenotype or of biomarkers poses a challenge for diagnosis and management of SAMS. Similarly, our incomplete understanding of the pathogenesis of SAMS hinders the identification of treatments for SAMS. Metabolomics, the profiling of metabolites in biofluids, cells and tissues is an important tool for biomarker discovery and provides important insight into the origins of symptomatology. In order to better understand the pathophysiology of this common disorder and to identify biomarkers, we undertook comprehensive metabolomic and lipidomic profiling of plasma samples from patients with SAMS who were undergoing statin rechallenge as part of their clinical care. METHODS AND FINDINGS: We report our findings in 67 patients, 28 with SAMS (cases) and 39 statin-tolerant controls. SAMS patients were studied during statin rechallenge and statin tolerant controls were studied while on statin. Plasma samples were analyzed using untargeted LC-MS metabolomics and lipidomics to detect differences between cases and controls. Differences in lipid species in plasma were observed between cases and controls. These included higher levels of linoleic acid containing phospholipids and lower ether lipids and sphingolipids. Reduced levels of acylcarnitines and altered amino acid profile (tryptophan, tyrosine, proline, arginine, and taurine) were observed in cases relative to controls. Pathway analysis identified significant increase of urea cycle metabolites and arginine and proline metabolites among cases along with downregulation of pathways mediating oxidation of branched chain fatty acids, carnitine synthesis, and transfer of acetyl groups into mitochondria. CONCLUSIONS: The plasma metabolome of patients with SAMS exhibited reduced content of long chain fatty acids and increased levels of linoleic acid (18:2) in phospholipids, altered energy production pathways (ß-oxidation, citric acid cycle and urea cycles) as well as reduced levels of carnitine, an essential mediator of mitochondrial energy production. Our findings support the hypothesis that alterations in pro-inflammatory lipids (arachidonic acid pathway) and impaired mitochondrial energy metabolism underlie the muscle symptoms of patients with statin associated muscle symptoms (SAMS).


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Prostaglandins , Muscles/metabolism , Carnitine , Fatty Acids/metabolism , Metabolomics/methods , Proline , Arginine , Biomarkers , Linoleic Acids , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...