Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Transl Res ; 251: 2-13, 2023 01.
Article in English | MEDLINE | ID: mdl-35724933

ABSTRACT

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Subject(s)
Atherosclerosis , Calcinosis , Dyslipidemias , Plaque, Atherosclerotic , Mice , Humans , Animals , Alkaline Phosphatase , Muscle, Smooth, Vascular , Positron Emission Tomography Computed Tomography , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Apolipoproteins E , Triglycerides
2.
Biomolecules ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38254642

ABSTRACT

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.


Subject(s)
Calcinosis , Extracellular Vesicles , Humans , Extracellular Matrix , Chondrocytes , Hypertrophy
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499456

ABSTRACT

Matrix vesicles (MVs) contain the whole machinery necessary to initiate apatite formation in their lumen. We suspected that, in addition to tissue-nonspecific alkaline phosphatase (TNAP), Na,K,-ATPase (NKA) could be involved in supplying phopshate (Pi) in the early stages of MV-mediated mineralization. MVs were extracted from the growth plate cartilage of chicken embryos. Their average mean diameters were determined by Dynamic Light Scattering (DLS) (212 ± 19 nm) and by Atomic Force Microcopy (AFM) (180 ± 85 nm). The MVs had a specific activity for TNAP of 9.2 ± 4.6 U·mg-1 confirming that the MVs were mineralization competent. The ability to hydrolyze ATP was assayed by a colorimetric method and by 31P NMR with and without Levamisole and SBI-425 (two TNAP inhibitors), ouabain (an NKA inhibitor), and ARL-67156 (an NTPDase1, NTPDase3 and Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) competitive inhibitor). The mineralization profile served to monitor the formation of precipitated calcium phosphate complexes, while IR spectroscopy allowed the identification of apatite. Proteoliposomes containing NKA with either dipalmitoylphosphatidylcholine (DPPC) or a mixture of 1:1 of DPPC and dipalmitoylphosphatidylethanolamine (DPPE) served to verify if the proteoliposomes were able to initiate mineral formation. Around 69-72% of the total ATP hydrolysis by MVs was inhibited by 5 mM Levamisole, which indicated that TNAP was the main enzyme hydrolyzing ATP. The addition of 0.1 mM of ARL-67156 inhibited 8-13.7% of the total ATP hydrolysis in MVs, suggesting that NTPDase1, NTPDase3, and/or NPP1 could also participate in ATP hydrolysis. Ouabain (3 mM) inhibited 3-8% of the total ATP hydrolysis by MVs, suggesting that NKA contributed only a small percentage of the total ATP hydrolysis. MVs induced mineralization via ATP hydrolysis that was significantly inhibited by Levamisole and also by cleaving TNAP from MVs, confirming that TNAP is the main enzyme hydrolyzing this substrate, while the addition of either ARL-6715 or ouabain had a lesser effect on mineralization. DPPC:DPPE (1:1)-NKA liposome in the presence of a nucleator (PS-CPLX) was more efficient in mineralizing compared with a DPPC-NKA liposome due to a better orientation of the NKA active site. Both types of proteoliposomes were able to induce apatite formation, as evidenced by the presence of the 1040 cm-1 band. Taken together, the findings indicated that the hydrolysis of ATP was dominated by TNAP and other phosphatases present in MVs, while only 3-8% of the total hydrolysis of ATP could be attributed to NKA. It was hypothesized that the loss of Na/K asymmetry in MVs could be caused by a complete depletion of ATP inside MVs, impairing the maintenance of symmetry by NKA. Our study carried out on NKA-liposomes confirmed that NKA could contribute to mineral formation inside MVs, which might complement the known action of PHOSPHO1 in the MV lumen.


Subject(s)
Calcinosis , Phosphoric Monoester Hydrolases , Animals , Chick Embryo , Phosphoric Monoester Hydrolases/metabolism , Sodium-Potassium-Exchanging ATPase , Calcification, Physiologic , Alkaline Phosphatase/metabolism , Hydrolysis , Adenosine Triphosphate , Liposomes/chemistry , Minerals/metabolism
4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012211

ABSTRACT

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Subject(s)
Annexin A6 , Calcinosis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Annexin A6/metabolism , Collagen/metabolism , Humans , Phosphates/metabolism , Phosphatidylserines/chemistry , Proteolipids
5.
Astrobiology ; 22(5): 598-627, 2022 05.
Article in English | MEDLINE | ID: mdl-35196460

ABSTRACT

Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.


Subject(s)
Phospholipids , Cell Membrane , Evolution, Chemical , Origin of Life , Phospholipids/chemistry
6.
J Biomed Mater Res B Appl Biomater ; 110(4): 967-983, 2022 04.
Article in English | MEDLINE | ID: mdl-34793621

ABSTRACT

The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.


Subject(s)
Bone and Bones , Tissue Scaffolds , Bone Regeneration , Collagen/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Int J Mol Sci ; 22(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924370

ABSTRACT

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


Subject(s)
Annexin A2/metabolism , Annexin A6/metabolism , Calcification, Physiologic , Osteoblasts/metabolism , Osteosarcoma/metabolism , alpha-2-HS-Glycoprotein/metabolism , Alkaline Phosphatase/metabolism , Calcium/metabolism , Cell Line, Tumor , Cell Shape , Humans , Phosphorus/metabolism
8.
Int J Mol Sci ; 22(6)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799449

ABSTRACT

(1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PPi). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineralization inhibitor PPi or the mineralization stimulator inorganic phosphate (Pi), and whether TNAP is involved. (2) Methods: Murine aortic smooth muscle cell line (MOVAS cells) were transdifferentiated into chondrocyte-like cells in calcifying medium, containing ascorbic acid and ß-glycerophosphate. ATP hydrolysis rates were determined in extracellular medium extracted from MOVAS cultures during their transdifferentiation, using 31P-NMR and IR spectroscopy. (3) Results: ATP and PPi hydrolysis by MOVAS cells increased during transdifferentiation. ATP hydrolysis was sequential, yielding adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine without any detectable PPi. The addition of levamisole partially inhibited ATP hydrolysis, indicating that TNAP and other types of ectonucleoside triphoshatediphosphohydrolases contributed to ATP hydrolysis. (4) Conclusions: Our findings suggest that high ATP levels released by cells in proximity to vascular smooth muscle cells (VSMCs) in atherosclerosis plaques generate Pi and not PPi, which may exacerbate plaque calcification.


Subject(s)
Atherosclerosis/genetics , Cell Transdifferentiation/genetics , Diphosphates/metabolism , Vascular Calcification/genetics , Adenosine Triphosphate , Alkaline Phosphatase/genetics , Animals , Aorta/cytology , Aorta/metabolism , Ascorbic Acid/pharmacology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Glycerophosphates/genetics , Glycerophosphates/metabolism , Humans , Magnetic Resonance Spectroscopy , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phosphates/metabolism , Vascular Calcification/metabolism , Vascular Calcification/pathology
9.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32858148

ABSTRACT

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Subject(s)
Biomineralization/physiology , Calcium Phosphates/metabolism , Lipids/physiology , Phosphatidylserines/metabolism , Animals , Apatites/metabolism , Biomimetics/methods , Calcification, Physiologic/physiology , Calcium/metabolism , Cartilage/metabolism , Chickens , Collagen/metabolism , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , Femur/metabolism , Microscopy, Electron, Transmission/methods
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165919, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32800947

ABSTRACT

Prostate cancer (PCa) is the most frequent cancer in men aged 65 and over. PCa mainly metastasizes in the bone, forming osteosclerotic lesions, inducing pain, fractures, and nerve compression. Cancer cell-derived exosomes participate in the metastatic spread, ranging from oncogenic reprogramming to the formation of pre-metastatic niches. Moreover, exosomes were recently involved in the dialog between PCa cells and the bone metastasis microenvironment. Phospholipase D (PLD) isoforms PLD1/2 catalyze the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA), regulating tumor progression and metastasis. PLD is suspected to play a role in exosomes biogenesis. We aimed to determine whether PCa-derived exosomes, through PLD, interact with the bone microenvironment, especially osteoblasts, during the metastatic process. Here we demonstrate for the first time that PLD2 is present in exosomes of C4-2B and PC-3 cells. C4-2B-derived exosomes activate proliferation and differentiation of osteoblasts models, by stimulating ERK 1/2 phosphorylation, by increasing the tissue-nonspecific alkaline phosphatase activity and the expression of osteogenic differentiation markers. Contrariwise, when C4-2B exosomes are generated in the presence of halopemide, a PLD pan-inhibitor, they lose their ability to stimulate osteoblasts. Furthermore, the number of released exosomes diminishes significantly (-40%). When the PLD product PA is combined with halopemide, exosome secretion is fully restored. Taken together, our results indicate that PLD2 stimulates exosome secretion in PCa cell models as well as their ability to increase osteoblast activity. Thus, PLD2 could be considered as a potent player in the establishment of PCa bone metastasis acting through tumor cell derived-exosomes.


Subject(s)
Cell Differentiation , Osteoblasts/cytology , Osteoblasts/metabolism , Phospholipase D/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , 3T3 Cells , Animals , Cells, Cultured , Exosomes/metabolism , Humans , Male , Mice
11.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085611

ABSTRACT

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Subject(s)
Annexin A6/metabolism , Calcification, Physiologic , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning , Cholesterol/metabolism , Humans , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Microscopy, Atomic Force , Proteolipids/metabolism
12.
Int J Mol Sci ; 20(12)2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31212828

ABSTRACT

Osteoblasts initiate bone mineralization by releasing matrix vesicles (MVs) into the extracellular matrix (ECM). MVs promote the nucleation process of apatite formation from Ca2+ and Pi in their lumen and bud from the microvilli of osteoblasts during bone development. Tissue non-specific alkaline phosphatase (TNAP) as well as annexins (among them, AnxA6) are abundant proteins in MVs that are engaged in mineralization. In addition, sarcoma proto-oncogene tyrosine-protein (Src) kinase and Rho-associated coiled-coil (ROCK) kinases, which are involved in vesicular transport, may also regulate the mineralization process. Upon stimulation in osteogenic medium containing 50 µg/mL of ascorbic acid (AA) and 7.5 mM of ß-glycerophosphate (ß-GP), human osteosarcoma Saos-2 cells initiated mineralization, as evidenced by Alizarin Red-S (AR-S) staining, TNAP activity, and the partial translocation of AnxA6 from cytoplasm to the plasma membrane. The addition of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine (PP2), which is an inhibitor of Src kinase, significantly inhibited the mineralization process when evaluated by the above criteria. In contrast, the addition of (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide hydrochloride (Y-27632), which is an inhibitor of ROCK kinase, did not affect significantly the mineralization induced in stimulated Saos-2 cells as denoted by AR-S and TNAP activity. In conclusion, mineralization by human osteosarcoma Saos-2 cells seems to be differently regulated by Src and ROCK kinases.


Subject(s)
Bone Neoplasms/metabolism , Calcification, Physiologic , Osteosarcoma/metabolism , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism , Annexins/metabolism , Biomarkers , Cell Line, Tumor , Cell Proliferation , Cell Survival , Extracellular Matrix/metabolism , Fluorescent Antibody Technique , Humans , Proto-Oncogene Mas
13.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30998909

ABSTRACT

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Subject(s)
Biomineralization/physiology , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Microscopy, Atomic Force/methods , Animals , Biomechanical Phenomena , Cartilage/chemistry , Cartilage/metabolism , Cartilage/ultrastructure , Chick Embryo , Extracellular Vesicles/ultrastructure , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
14.
Bioorg Med Chem ; 27(6): 1034-1042, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30773420

ABSTRACT

Selective proteinase inhibitors have demonstrated utility in the investigation of cartilage degeneration mechanisms and may have clinical use in the management of osteoarthritis. The cysteine protease cathepsin K (CatK) is an attractive target for arthritis therapy. Here we report the synthesis of two cathepsin K inhibitors (CKIs): racemic azanitrile derivatives CKI-E and CKI-F, which have better inhibition properties on CatK than the commercial inhibitor odanacatib (ODN). Their IC50 values and inhibition constants (Ki) have been determined in vitro. Inhibitors demonstrate differential selectivity for CatK over cathepsin B, L and S in vitro, with Ki amounting to 1.14 and 7.21 nM respectively. We analyzed the effect of these racemic inhibitors on viability in different cell types. The human osteoblast-like cell line MG63, MOVAS cells (a murine vascular smooth muscle cell line) or murine primary chondrocytes, were treated either with CKI-E or with CKI-F, which were not toxic at doses of up to 5 µM. Primary chondrocytes subjected to several passages were used as a model of phenotypic loss of articular chondrocytes, occurring in osteoarthritic cartilage. The efficiency of CKIs regarding CatK inhibition and their specificity over other proteases were validated in primary chondrocytes subjected to several passages. Racemic CKI-E and CKI-F at 0.1 and 1 µM significantly inhibited CatK activity in dedifferentiated chondrocytes, even better than the commercial CatK inhibitor ODN. The enzymatic activity of other proteases such as matrix metalloproteinases or aggrecanases were not affected. Taken together, these findings support the possibility to design CatK inhibitors for preventing cartilage degradation in different pathologies.


Subject(s)
Cathepsin K/antagonists & inhibitors , Cell Dedifferentiation/drug effects , Chondrocytes/drug effects , Nitriles/pharmacology , Protease Inhibitors/pharmacology , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/pharmacology , Cathepsin K/metabolism , Cell Line , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/enzymology , Drug Design , Humans , Mice , Nitriles/chemical synthesis , Nitriles/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry
15.
J Cell Biochem ; 120(4): 5923-5935, 2019 04.
Article in English | MEDLINE | ID: mdl-30320913

ABSTRACT

Mammalian phospholipase D (PLD) mostly hydrolyzes phosphatidylcholine producing phosphatidic acid. PLD activity was previously detected in different osteoblastic cell models, and was increased by several growth factors involved in bone homeostasis. To confirm possible actions of PLD isoforms during mineralization process, we analyzed their effects in osteoblastic cell models and during bone formation. PLD1 expression, along with PLD activity, increased during differentiation of primary osteoblasts and Saos-2 cells, and peaked at the onset of mineralization. Subsequently, both PLD1 expression and PLD activity decreased, suggesting that PLD1 function is regulated during osteoblast maturation. In contrast, PLD2 expression was not significantly affected during differentiation of osteoblasts. Overexpression of PLD1 in Saos-2 cells improved their mineralization potential. PLD inhibitor Halopemide or PLD1-selective inhibitor, led to a decrease in mineralization in both cell types. On the contrary, the selective inhibitor of PLD2, did not affect the mineralization process. Moreover, primary osteoblasts isolated from PLD1 knockout (KO) mice were significantly less efficient in mineralization as compared with those isolated from wild type (WT) or PLD2 KO mice. In contrast, bone formation, as monitored by high-resolution microcomputed tomography analysis, was not impaired in PLD1 KO nor in PLD2 KO mice, indicating that the lack of PLD1 or that of PLD2 did not affect the bone structure in adult mice. Taken together, our findings indicate that PLD activity, especially which of PLD1 isoform, may enhance the mineralization process in osteoblastic cells. Nonetheless, the lack of PLD1 or PLD2 do not seem to significantly affect bone formation in adult mice.


Subject(s)
Osteoblasts/metabolism , Phospholipase D/metabolism , Alkaline Phosphatase/metabolism , Animals , Blotting, Western , Calcification, Physiologic/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Female , Mice , Mice, Knockout , Osteoblasts/cytology , Osteogenesis/physiology , Phospholipase D/genetics , Real-Time Polymerase Chain Reaction
16.
J Bone Miner Metab ; 37(4): 607-613, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30324534

ABSTRACT

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.


Subject(s)
Alkaline Phosphatase/metabolism , Calcification, Physiologic , Cellular Microenvironment , Lipids/chemistry , Proteolipids/metabolism , Adenosine Triphosphate/metabolism , Animals , Dynamic Light Scattering , Humans , Hydrolysis , Kinetics , Spectroscopy, Fourier Transform Infrared
17.
Biochim Biophys Acta Gen Subj ; 1863(1): 199-209, 2019 01.
Article in English | MEDLINE | ID: mdl-30312769

ABSTRACT

BACKGROUND: Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS: PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS: PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION: PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE: PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.


Subject(s)
Durapatite/chemistry , Osteoblasts/metabolism , Polyphosphates/chemistry , Alkaline Phosphatase/metabolism , Animals , Bone and Bones/metabolism , Calcification, Physiologic , Calcium/chemistry , Cartilage/metabolism , Cell Line, Tumor , Chick Embryo , Extracellular Matrix/metabolism , Humans , Hydrolysis , Indoles/chemistry , Light , Microscopy, Confocal , Microscopy, Electron, Transmission , Osteogenesis , Scattering, Radiation , Type C Phospholipases/chemistry
18.
J Cell Physiol ; 234(4): 4825-4839, 2019 04.
Article in English | MEDLINE | ID: mdl-30207376

ABSTRACT

Vascular calcification (VC) is the pathological accumulation of calcium phosphate crystals in one of the layers of blood vessels, leading to loss of elasticity and causing severe calcification in vessels. Medial calcification is mostly seen in patients with chronic kidney disease (CKD) and diabetes. Identification of key enzymes and their actions during calcification will contribute to understand the onset of pathological calcification. Phospholipase D (PLD1, PLD2) is active at the earlier steps of mineralization in osteoblasts and chondrocytes. In this study, we aimed to determine their effects during high-phosphate treatment in mouse vascular smooth muscle cell line MOVAS, in the ex vivo model of the rat aorta, and in the in vivo model of adenine-induced CKD. We observed an early increase in PLD1 gene and protein expression along with the increase in the PLD activity in vascular muscle cell line, during calcification induced by ascorbic acid and ß-glycerophosphate. Inhibition of PLD1 by the selective inhibitor VU0155069, or the pan-PLD inhibitor, halopemide, prevented calcification. The mechanism of PLD activation is likely to be protein kinase C (PKC)-independent since bisindolylmaleimide X hydrochloride, a pan-PKC inhibitor, did not affect the PLD activity. In agreement, we found an increase in Pld1 gene expression and PLD activity in aortic explant cultures treated with high phosphate, whereas PLD inhibition by halopemide decreased calcification. Finally, an increase in both Pld1 and Pld2 expression occurred simultaneously with the appearance of VC in a rat model of CKD. Thus, PLD, especially PLD1, promotes VC in the context of CKD and could be an important target for preventing onset or progression of VC.


Subject(s)
Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Phospholipase D/metabolism , Phosphorus, Dietary , Renal Insufficiency, Chronic/complications , Vascular Calcification/etiology , Animals , Calcium, Dietary , Cell Line , Cell Transdifferentiation , Disease Models, Animal , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phosphodiesterase Inhibitors/pharmacology , Phospholipase D/antagonists & inhibitors , Phospholipase D/genetics , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/enzymology , Signal Transduction , Tissue Culture Techniques , Vascular Calcification/enzymology , Vascular Calcification/pathology , Vascular Calcification/prevention & control
19.
J Vis Exp ; (136)2018 06 24.
Article in English | MEDLINE | ID: mdl-29985356

ABSTRACT

This video presents the use of transmission electron microscopy with energy dispersive X-ray microanalysis (TEM-EDX) to compare the state of minerals in vesicles released by two human bone cell lines: hFOB 1.19 and Saos-2. These cell lines, after treatment with ascorbic acid (AA) and ß-glycerophosphate (ß-GP), undergo complete osteogenic transdifferentiation from proliferation to mineralization and produce matrix vesicles (MVs) that trigger apatite nucleation in the extracellular matrix (ECM). Based on Alizarin Red-S (AR-S) staining and analysis of the composition of minerals in cell lysates using ultraviolet (UV) light or in vesicles using TEM imaging followed by EDX quantitation and ion mapping, we can infer that osteosarcoma Saos-2 and osteoblastic hFOB 1.19 cells reveal distinct mineralization profiles. Saos-2 cells mineralize more efficiently than hFOB 1.19 cells and produce larger mineral deposits that are not visible under UV light but are similar to hydroxyapatite (HA) in that they have more Ca and F substitutions. The results obtained using these techniques allow us to conclude that the process of mineralization differs depending on the cell type. We propose that, at the cellular level, the origin and properties of vesicles predetermine the type of minerals.


Subject(s)
Electron Probe Microanalysis/methods , Microscopy, Electron, Transmission/methods , Minerals/metabolism , Humans , Minerals/analysis
20.
J Inorg Biochem ; 186: 1-9, 2018 09.
Article in English | MEDLINE | ID: mdl-29802927

ABSTRACT

Vascular calcification (VC) is a hallmark of atherosclerotic plaques. Calcification of advanced plaques shares common features with endochondral ossification of long bones and appears to be protective. On the other hand, microcalcification of early plaques, which is poorly understood, is thought to be harmful. Tissue-nonspecific alkaline phosphatase (TNAP) and collagen are the two proteins necessary for physiological mineralization. Here, we demonstrate the presence of membrane-bound TNAP, detected by immunofluorescence, that seems to form clusters on the plasma membrane of vascular smooth muscle cells (VSMCs) cultured in mineralizing conditions. We observed that TNAP activity and mineralization were increased when VSMCs were cultured in the presence of ascorbic acid (AA) and ß-glycerophosphate (ß-GP). Increased TNAP activity was observed in whole cell lysates, total membrane fractions and, more particularly, in matrix vesicles (MVs). We have shown that TNAP-enriched MVs released from VSMCs subjected to collagenase contained more apatite-like mineral than the less TNAP-rich/TNAP-enriched vesicles isolated without collagenase treatment. These results suggest a role for collagen in promoting calcification induced by TNAP in atherosclerotic plaques.


Subject(s)
Alkaline Phosphatase/metabolism , Atherosclerosis/enzymology , Collagen/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Vascular Calcification/enzymology , Animals , Atherosclerosis/pathology , Mice , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Vascular Calcification/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...