Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2043, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440561

ABSTRACT

Rising emissions from wildfires over recent decades in the Pacific Northwest are known to counteract the reductions in human-produced aerosol pollution over North America. Since amplified Pacific Northwest wildfires are predicted under accelerating climate change, it is essential to understand both local and transported contributions to air pollution in North America. Here, we find corresponding increases for carbon monoxide emitted from the Pacific Northwest wildfires and observe significant impacts on both local and down-wind air pollution. Between 2002 and 2018, the Pacific Northwest atmospheric carbon monoxide abundance increased in August, while other months showed decreasing carbon monoxide, so modifying the seasonal pattern. These seasonal pattern changes extend over large regions of North America, to the Central USA and Northeast North America regions, indicating that transported wildfire pollution could potentially impact the health of millions of people.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , Carbon Monoxide , Humans , North America , Seasons
2.
Ann Rev Mar Sci ; 14: 303-330, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34416126

ABSTRACT

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.


Subject(s)
Ecosystem , Wind , Aerosols/analysis , Atmosphere , Nutrients , Oceans and Seas
3.
Atmos Chem Phys ; 20(23): 14617-14647, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33414818

ABSTRACT

Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.

4.
Dalton Trans ; (43): 6045-54, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19082062

ABSTRACT

A structural model for the active site of phosphoesterases, enzymes that degrade organophosphate neurotoxins, has been synthesised. The ligand [2-((2-hydroxy-3-(((2-hydroxyethyl)(pyridin-2-ylmethyl)amino)methyl)-5-methylbenzyl)(pyridin-2-ylmethyl)amino)acetic acid] (H(3)L1) and two Zn(ii) complexes have been prepared and characterised as [Zn(2)(HL1)(CH(3)COO)](PF(6)).H(2)O and Li[Zn(2)(HL1)](4)(PO(4))(2)(PF(6))(3).(CH(3)OH). The ligand (H(3)L1) and complex [Zn(2)(HL1)(CH(3)COO)](PF(6)).H(2)O were characterised through (1)H NMR, (13)C NMR, mass spectroscopy and microanalysis. The X-ray crystal structure of Li[Zn(2)(HL1)](4)(PO(4))(2)(PF(6))(3).(CH(3)OH) revealed a tetramer of dinuclear complexes, bridged by two phosphate molecules and bifurcating acetic acid arms. Functional studies of the zinc complex with the substrate bis(4-nitrophenyl)phosphate (bNPP) determined the complex with HL1(2-) to be a competent catalyst with k(cat) = 1.26 +/- 0.06 x 10(-6) s(-1).


Subject(s)
Esterases/chemistry , Esterases/metabolism , Models, Molecular , Phosphates/metabolism , Zinc/chemistry , Zinc/metabolism , Biocatalysis , Crystallography, X-Ray , Hydrogen Bonding , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...