Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33158895

ABSTRACT

Deer tick-transmitted Borrelia burgdorferisensu stricto (Lyme disease) and Babesia microti (babesiosis) increasingly burden public health across eastern North America. The white-footed mouse is considered the primary host for subadult deer ticks and the most important reservoir host for these and other disease agents. Local transmission is thought to be modulated by less reservoir-competent hosts, such as deer, diverting ticks from feeding on mice. We measured the proportion of mouse-fed or deer-fed host-seeking nymphs from 4 sites during 2 transmission seasons by blood meal remnant analysis using a new retrotransposon-based quantitative PCR (qPCR) assay. We then determined the host that was associated with the infection status of the tick. During the first year, the proportion of mouse-fed ticks ranged from 17% on mainland sites to 100% on an island, while deer-fed ticks ranged from 4% to 24%. The proportion of ticks feeding on mice and deer was greater from island sites than mainland sites (on average, 92% versus 43%). Mouse-fed ticks decreased significantly during year 2 in 3 of 4 sites (most were <20%), while deer-fed ticks increased for all sites (75% at one site). Overall, ticks were more likely to be infected when they had fed on mice (odds ratio [OR] of 2.4 and 1.6 for Borrelia and Babesia, respectively) and were less likely to be infected if they had fed on deer (OR, 0.8 and 0.4). We conclude that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.IMPORTANCE White-footed mice are thought to be the most important reservoir host for the deer tick-transmitted pathogens that cause Lyme disease and human babesiosis because they are the primary host for immature ticks. Transmission would be reduced, however, if ticks feed on deer, which are not capable of infecting ticks with either pathogen. By directly measuring whether ticks had fed on either mice or deer using a new quantitative PCR (qPCR) assay to detect remnants of host DNA leftover from the larval blood meal, we demonstrate that host utilization by ticks varies significantly over time and space and that mice often feed fewer ticks than expected. This finding has implications for our understanding of the ecology of these diseases and for the efficacy of control measures.


Subject(s)
Babesia microti/isolation & purification , Borrelia burgdorferi/isolation & purification , Deer , Ixodes/microbiology , Peromyscus , Animals , DNA/analysis , Deer/blood , Deer/genetics , Deer/microbiology , Female , New England , Nymph/microbiology , Peromyscus/blood , Peromyscus/genetics , Peromyscus/microbiology , Retroelements
2.
Emerg Infect Dis ; 25(8): 1592-1593, 2019 08.
Article in English | MEDLINE | ID: mdl-31146799

ABSTRACT

Subtropical lone star tick larvae typically emerge in late summer. We found clusters of host-seeking lone star tick larvae during early June 2018 in New York and Massachusetts, USA. Invasion and persistence of this tick in more northern locations may have been promoted by adaptation to an accelerated life cycle.


Subject(s)
Arachnid Vectors , Ixodidae , Tick Infestations/epidemiology , Animals , Female , Ixodidae/classification , Larva , Male , Massachusetts/epidemiology , New York/epidemiology , Public Health Surveillance , Seasons
3.
Proc Natl Acad Sci U S A ; 116(17): 8275-8282, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30940750

ABSTRACT

If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprising genetic elements arranged in a daisy chain such that each drives the next. "Daisy-drive" systems can locally duplicate any effect achievable by using an equivalent self-propagating drive system, but their capacity to spread is limited by the successive loss of nondriving elements from one end of the chain. Releasing daisy-drive organisms constituting a small fraction of the local wild population can drive a useful genetic element nearly to local fixation for a wide range of fitness parameters without self-propagating spread. We additionally report numerous highly active guide RNA sequences sharing minimal homology that may enable evolutionarily stable daisy drive as well as self-propagating CRISPR-based gene drive. Especially when combined with threshold dependence, daisy drives could simplify decision-making and promote ethical use by enabling local communities to decide whether, when, and how to alter local ecosystems.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Drive Technology/methods , Gene Drive Technology/standards , Organisms, Genetically Modified/genetics , Animals , Anopheles/genetics , Ecology , Female , Genetic Engineering , HEK293 Cells , Humans , Malaria/prevention & control , Male , RNA, Guide, Kinetoplastida/genetics
4.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180105, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30905296

ABSTRACT

Mice Against Ticks is a community-guided ecological engineering project that aims to prevent tick-borne disease by using CRISPR-based genome editing to heritably immunize the white-footed mice ( Peromyscus leucopus) responsible for infecting many ticks in eastern North America. Introducing antibody-encoding resistance alleles into the local mouse population is anticipated to disrupt the disease transmission cycle for decades. Technology development is shaped by engagement with community members and visitors to the islands of Nantucket and Martha's Vineyard, including decisions at project inception about which types of disease resistance to pursue. This engagement process has prompted the researchers to use only white-footed mouse DNA if possible, meaning the current project will not involve gene drive. Instead, engineered mice would be released in the spring when the natural population is low, a plan unlikely to increase total numbers above the normal maximum in autumn. Community members are continually asked to share their suggestions and concerns, a process that has already identified potential ecological consequences unanticipated by the research team that will likely affect implementation. As an early example of CRISPR-based ecological engineering, Mice Against Ticks aims to start small and simple by working with island communities whose mouse populations can be lastingly immunized without gene drive. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Subject(s)
Borrelia burgdorferi/physiology , CRISPR-Cas Systems/immunology , Clustered Regularly Interspaced Short Palindromic Repeats/immunology , Immunization/veterinary , Lyme Disease/veterinary , Peromyscus/immunology , Animals , Disease Reservoirs/veterinary , Immunization/methods , Ixodes/microbiology , Lyme Disease/prevention & control , Rodent Diseases/prevention & control
5.
Nat Methods ; 13(7): 563-567, 2016 07.
Article in English | MEDLINE | ID: mdl-27214048

ABSTRACT

Several programmable transcription factors exist based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems, and we assess the role of cooperativity in maximizing gene expression.


Subject(s)
CRISPR-Associated Proteins/metabolism , Drosophila melanogaster/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , Drosophila melanogaster/genetics , Genes, vpr , Genetic Engineering , Humans , Mice , Transcription Factors/genetics
6.
Nat Methods ; 12(11): 1051-4, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26344044

ABSTRACT

We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.


Subject(s)
CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/analysis , Binding Sites , CRISPR-Associated Proteins/genetics , Flow Cytometry , Fluorescent Dyes/analysis , Gene Deletion , Genes, Reporter , Genetic Engineering/methods , Genetic Vectors , Genome , HEK293 Cells , Humans , Microscopy, Fluorescence , Mutagenesis , Mutation , RNA Editing , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...