Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1385775, 2024.
Article in English | MEDLINE | ID: mdl-38572241

ABSTRACT

HIV-1 gp120 glycan binding to C-type lectin adhesion receptor L-selectin/CD62L on CD4 T cells facilitates viral attachment and entry. Paradoxically, the adhesion receptor impedes HIV-1 budding from infected T cells and the viral release requires the shedding of CD62L. To systematically investigate CD62L-shedding mediated viral release and its potential inhibition, we screened compounds specific for serine-, cysteine-, aspartyl-, and Zn-dependent proteases for CD62L shedding inhibition and found that a subclass of Zn-metalloproteinase inhibitors, including BB-94, TAPI, prinomastat, GM6001, and GI25423X, suppressed CD62L shedding. Their inhibition of HIV-1 infections correlated with enzymatic suppression of both ADAM10 and 17 activities and expressions of these ADAMs were transiently induced during the viral infection. These metalloproteinase inhibitors are distinct from the current antiretroviral drug compounds. Using immunogold labeling of CD62L, we observed association between budding HIV-1 virions and CD62L by transmission electron microscope, and the extent of CD62L-tethering of budding virions increased when the receptor shedding is inhibited. Finally, these CD62L shedding inhibitors suppressed the release of HIV-1 virions by CD4 T cells of infected individuals and their virion release inhibitions correlated with their CD62L shedding inhibitions. Our finding reveals a new therapeutic approach targeted at HIV-1 viral release.

2.
Alzheimers Dement ; 20(4): 2632-2652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375983

ABSTRACT

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid/metabolism , Brain/pathology , Amyloidogenic Proteins/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic
3.
Mol Ther Nucleic Acids ; 34: 102080, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38089931

ABSTRACT

Although an increasing number of small interfering RNA (siRNA) therapies are reaching the market, the challenge of efficient extra-hepatic delivery continues to limit their full therapeutic potential. Drug delivery vehicles and hydrophobic conjugates are being used to overcome the delivery bottleneck. Previously, we reported a novel dendritic conjugate that can be appended efficiently to oligonucleotides, allowing them to bind albumin with nanomolar affinity. Here, we explore the ability of this novel albumin-binding conjugate to improve the delivery of siRNA in vivo. We demonstrate that the conjugate binds albumin exclusively in circulation and extravasates to various organs, enabling effective gene silencing. Notably, we show that the conjugate achieves a balance between hydrophobicity and safety, as it significantly reduces the side effects associated with siRNA interactions with blood components, which are commonly observed in some hydrophobically conjugated siRNAs. In addition, it reduces siRNA monocyte uptake, which may lead to cytokine/inflammatory responses. This work showcases the potential of using this dendritic conjugate as a selective albumin binding handle for the effective and safe delivery of nucleic acid therapeutics. We envision that these properties may pave the way for new opportunities to overcome delivery hurdles of oligonucleotides in future applications.

5.
Mol Ther ; 31(6): 1661-1674, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37177784

ABSTRACT

Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.


Subject(s)
Huntington Disease , MutS Homolog 3 Protein , Trinucleotide Repeat Expansion , Animals , Mice , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Neostriatum/metabolism , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Trinucleotide Repeat Expansion/genetics , MutS Homolog 3 Protein/genetics
6.
PLoS One ; 18(2): e0281087, 2023.
Article in English | MEDLINE | ID: mdl-36780482

ABSTRACT

HIV infection remains incurable to date and there are no compounds targeted at the viral release. We show here HIV viral release is not spontaneous, rather requires caspases activation and shedding of its adhesion receptor, CD62L. Blocking the caspases activation caused virion tethering by CD62L and the release of deficient viruses. Not only productive experimental HIV infections require caspases activation for viral release, HIV release from both viremic and aviremic patient-derived CD4 T cells also require caspase activation, suggesting HIV release from cellular viral reservoirs depends on apoptotic shedding of the adhesion receptor. Further transcriptomic analysis of HIV infected CD4 T cells showed a direct contribution of HIV accessory gene Nef to apoptotic caspases activation. Current HIV cure focuses on the elimination of latent cellular HIV reservoirs that are resistant to infection-induced cell death. This has led to therapeutic strategies to stimulate T cell apoptosis in a "kick and kill" approach. Our current work has shifted the paradigm on HIV-induced apoptosis and suggests such approach would risk to induce HIV release and thus be counter-productive. Instead, our study supports targeting of viral reservoir release by inhibiting of caspases activation.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , nef Gene Products, Human Immunodeficiency Virus , Humans , Caspases/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Death , HIV Infections/drug therapy , HIV-1/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
7.
Artif Organs ; 46(2): 180-190, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35014719

ABSTRACT

Organ transplantation is the definitive treatment for end-stage solid organ diseases, yet biological and logistical barriers reduce the rate of successful organ transplants. As such, there is a need for gene therapy and gene modulation strategies in the organ transplantation setting to prevent rejection, expand the donor pool of available organs, and attenuate ischemia-reperfusion damage. As we are entering an era of "precision medicine," the organ transplant field is becoming equipped with the tools necessary to personalize and optimize organs designed specifically to withstand injurious pathways that occur during transplantation, such that the concept of "designer organs" will be a reality in the near future. In this review, we highlight the recent progress using gene knockout and knock-in strategies used mainly in the context of xenotransplantation. We also discuss advancements in CRISPR-Cas9 gene editing and RNA interference in relation to organ transplantation. Lastly, we discuss the exciting future implications of customized gene therapy in the transplantation setting, and its ability to potentially create a future where organs intended for transplant are personalized to maximize both graft and patient survival.


Subject(s)
Organ Transplantation/methods , Precision Medicine/methods , Animals , Gene Knock-In Techniques , Gene Knockout Techniques , Genetic Therapy/methods , Graft Rejection , Humans , Organ Preservation , Perfusion , RNA Interference , Transplantation, Heterologous/methods
9.
Transplantation ; 104(9): 1792-1803, 2020 09.
Article in English | MEDLINE | ID: mdl-32371846

ABSTRACT

Because of the high demand of organs, the usage of marginal grafts has increased. These marginal organs have a higher risk of developing ischemia-reperfusion injury, which can lead to posttransplant complications. Ex situ machine perfusion (MP), compared with the traditional static cold storage, may better protect these organs from ischemia-reperfusion injury. In addition, MP can also act as a platform for dynamic administration of pharmacological agents or gene therapy to further improve transplant outcomes. Numerous therapeutic agents have been studied under both hypothermic (1-8°C) and normothermic settings. Here, we review all the therapeutics used during MP in different organ systems (lung, liver, kidney, heart). The major categories of therapeutic agents include vasodilators, mesenchymal stem cells, antiinflammatory agents, antiinfection agents, siRNA, and defatting agents. Numerous animal and clinical studies have examined MP therapeutic agents, some of which have even led to the successful reconditioning of discarded grafts. More clinical studies, especially randomized controlled trials, will need to be conducted in the future to solidify these promising results and to define the role of MP therapeutic agents in solid organ transplantation.


Subject(s)
Organ Preservation/methods , Organ Transplantation/methods , Perfusion/methods , Animals , Anti-Inflammatory Agents/pharmacology , Genetic Therapy , Humans , Reperfusion Injury/prevention & control , Vasodilator Agents/pharmacology
10.
Int J Surg ; 82S: 52-60, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32417462

ABSTRACT

To expand the donor pool of suitable organs for transplantation, there is an increased interest in utilizing extended criteria donor grafts (ECD). Ex-situ machine perfusion has shown to be a promising new modality in the organ preservation field to reduce injury and recover ECD liver grafts. Machine perfusion (MP) is considered a significant improvement in the field of transplantation over the past 20 years. Normothermic machine perfusion has entered the clinical arena in the last decade and has shown promising results to improve the quality of marginal organs and to increase the pool of liver grafts. It allows assessment of viability and function of grafts prior to transplantation. In addition, it has the potential to serve as a platform for pharmacologic organ treatment and graft optimization. Machine perfusion moved from the experimental phase to a more mature phase after safety was confirmed by initial clinical trials. Now, it is time to confirm its superiority and cost-effectiveness before a broader clinical use. In this paper we review the history, current status including outcomes of all clinical trials, limitations, and future trends of normothermic machine preservation.


Subject(s)
Liver Transplantation , Organ Preservation/methods , Perfusion/methods , Clinical Trials as Topic , Humans , Liver/physiopathology , Liver/surgery , Transplants/physiopathology , Transplants/surgery , Treatment Outcome
11.
World J Transplant ; 10(1): 1-14, 2020 Jan 18.
Article in English | MEDLINE | ID: mdl-32110510

ABSTRACT

Although the use of extended criteria donors has increased the pool of available livers for transplant, it has also introduced the need to develop improved methods of protection against ischemia-reperfusion injury (IRI), as these "marginal" organs are particularly vulnerable to IRI during the process of procurement, preservation, surgery, and post-transplantation. In this review, we explore the current basic science research investigating therapeutics administered during ex vivo liver machine perfusion aimed at mitigating the effects of IRI in the liver transplantation process. These various categories of therapeutics are utilized during the perfusion process and include invoking the RNA interference pathway, utilizing defatting cocktails, and administering classes of agents such as vasodilators, anti-inflammatory drugs, human liver stem cell-derived extracellular vesicles, and δ-opioid agonists in order to reduce the damage of IRI. Ex vivo machine perfusion is an attractive alternative to static cold storage due to its ability to continuously perfuse the organ, effectively deliver substrates and oxygen required for cellular metabolism, therapeutically administer pharmacological or cytoprotective agents, and continuously monitor organ viability during perfusion. The use of administered therapeutics during machine liver perfusion has demonstrated promising results in basic science studies. While novel therapeutic approaches to combat IRI are being developed through basic science research, their use in clinical medicine and treatment in patients for liver transplantation has yet to be explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...