Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 23(13): 7682-7695, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33496289

ABSTRACT

The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. The effects of temperature and temperature evolution are important with regard to both the cluster synthesis and the cluster dynamics upon IR excitation. In the past the combination of the sodium doping technique with IR excitation enhanced near threshold photoionization has been successfully applied to study neutral, especially water clusters. In this work we follow an overall examination approach for inspecting the interplay of cluster temperature and cluster structure in the initial cooling process and in the IR excitation induced heating of the clusters. In molecular simulations, we study the temperature dependent photoionization spectra of the sodium doped clusters and the evaporative cooling process by water molecule ejection at the cluster surface. We present a comprehensive analysis that provides constraints for the temperature evolution from the nozzle to cluster detection in the mass spectrometer. We attribute the IR action effect to the strong temperature dependence of sodium solvation in the IR excited clusters and we discuss the effects of geometry changes during the IR multi-photon absorption process with regard to application prospects of the method.

2.
Proc Natl Acad Sci U S A ; 116(49): 24413-24419, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31685641

ABSTRACT

The appearance of ice I in the smallest possible clusters and the nature of its phase coexistence with liquid water could not thus far be unraveled. The experimental and theoretical infrared spectroscopic and free-energy results of this work show the emergence of the characteristic hydrogen-bonding pattern of ice I in clusters containing only around 90 water molecules. The onset of crystallization is accompanied by an increase of surface oscillator intensity with decreasing surface-to-volume ratio, a spectral indicator of nanoscale crystallinity of water. In the size range from 90 to 150 water molecules, we observe mixtures of largely crystalline and purely amorphous clusters. Our analysis suggests that the liquid-ice I transition in clusters loses its sharp 1st-order character at the end of the crystalline-size regime and occurs over a range of temperatures through heterophasic oscillations in time, a process without analog in bulk water.

3.
Phys Chem Chem Phys ; 19(6): 4678-4687, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28127600

ABSTRACT

The inelastic scattering of H2O by He as a function of collision energy in the range 381 cm-1 to 763 cm-1 at an energy interval of approximately 100 cm-1 has been investigated in a crossed beam experiment using velocity map imaging. Change in collision energy was achieved by varying the collision angle between the H2O and He beam. We measured the state-to-state differential cross section (DCS) of scattered H2O products for the final rotational states JKaKc = 110, 111, 221 and 414. Rotational excitation of H2O is probed by (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectroscopy. DCS measurements over a wide range of collision energies allowed us to probe the H2O-He potential energy surface (PES) with greater detail than in previous work. We found that a classical approximation of rotational rainbows can predict the collision energy dependence of the DCS. Close-coupling quantum mechanical calculations were used to produce DCS and partial cross sections. The forward-backward ratio (FBR), is introduced here to compare the experimental and theoretical DCS. Both theory and experiments suggest that an increase in the collision energy is accompanied with more forward scattering.

4.
J Phys Chem A ; 119(11): 2709-20, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25515154

ABSTRACT

In water clusters containing 10-100 water molecules the structural transition takes place between "all surface" structures without internally solvated water molecules to amorphous water clusters with a three dimensionally structured interior. This structural evolution is explored with rigorous size selection by IR excitation modulated photoionization spectroscopy of sodium-doped (H2O)n clusters. The emergence of fully coordinated interior water molecules is observed by an increased relative absorption from 3200 to 3400 cm(-1) in agreement with theoretical predictions and earlier experimental studies. The analysis has also shown that the intermediate-sized water clusters (n = 40-65) do not smoothly link the structures in the largest and smallest analyzed size regions (n = 15-35 and n = 100-150) in line with previous reports suggesting the appearance of exceptionally stable water cluster isomers at n = 51, 53, 55, and 57. In the size range from n = 49 to n = 55 a reduced ion yield, a plateau in the total IR signal gain and signatures in the distribution of free OH stretch oscillator absorption have been observed. Recently reported putative global minima structures for n = 51 and n = 54 point to the presence of periplanar interior rings in odd-numbered clusters in this size range, which may affect cluster (surface) stability and the shape of the free OH stretch absorption peak. Potential links between pure and sodium-doped water cluster structures and the signatures of solvated electrons in photoelectron spectra of anionic water clusters are discussed.

5.
Phys Chem Chem Phys ; 16(48): 26691-6, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25231162

ABSTRACT

Water clusters with internally solvated water molecules are widespread models that mimic the local environment of the condensed phase. The appearance of stable (H2O)n cluster isomers having a fully coordinated interior molecule has been theoretically predicted to occur around the n = 20 size range. However, our current knowledge about the size regime in which those structures become energetically more stable has remained hypothetical from simulations in lieu of the absence of precisely size-resolved experimental measurements. Here we report size and isomer selective infrared (IR) spectra of (H2O)20 clusters tagged with a sodium atom by employing IR excitation modulated photoionization spectroscopy. The observed absorption patterns in the OH stretching region are consistent with the theoretically predicted spectra of two structurally distinct isomers of exceptional stability: a drop-like cluster with a fully coordinated (interior) water molecule and an edge-sharing pentagonal prism cluster in which all atoms are on the surface. The drop-like structure is the first experimentally detected water cluster exhibiting the local connectivity found in liquid water.


Subject(s)
Spectrophotometry, Infrared/methods , Water/chemistry , Isomerism , Models, Molecular , Thermodynamics
6.
Phys Chem Chem Phys ; 16(15): 6859-71, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24603719

ABSTRACT

Size selected water clusters are generated by photoionizing sodium doped clusters close to the ionization threshold. This procedure is free of fragmentation. Upon infrared excitation, size- and isomer-specific OH-stretch spectra are obtained over a large range of cluster sizes. In one application of this method the infrared spectra of single water cluster sizes are investigated. A comparison with calculations, based on structures optimized by genetic algorithms, has been made to tentatively derive cluster structures which reproduce the experimental spectra. We identified a single all-surface structure for n = 25 and mixtures with one or two interior molecules for n = 24 and 32. In another application the sizes are determined at which the crystallization sets in. Surprisingly, this process strongly depends on the cluster temperature. The crystallization starts at sizes below n = 200 at higher temperatures and the onset is shifted to sizes above n = 400 at lower temperatures.

7.
Science ; 337(6101): 1529-32, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22997336

ABSTRACT

The number of water molecules needed to form the smallest ice crystals has proven challenging to pinpoint experimentally. This information would help to better understand the hydrogen-bonding interactions that account for the macroscopic properties of water. Here, we report infrared (IR) spectra of precisely size-selected (H(2)O)(n) clusters, with n ranging from 85 to 475; sodium doping and associated IR excitation-modulated photoionization spectroscopy allowed the study of this previously intractable size domain. Spectral features indicating the onset of crystallization are first observed for n = 275 ± 25; for n = 475 ± 25, the well-known band of crystalline ice around 3200 cm(-1) dominates the OH-stretching region. The applied method has the potential to push size-resolved IR spectroscopy of neutral clusters more broadly to the 100- to 1000-molecule range, in which many solvents start to manifest condensed phase properties.

8.
J Phys Chem A ; 115(23): 6068-76, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21405035

ABSTRACT

Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.


Subject(s)
Ethanol/chemistry , Sodium/chemistry , Methanol/chemistry , Quantum Theory , Solutions , Solvents/chemistry , Water/chemistry
9.
J Phys Chem A ; 115(23): 6155-68, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21265520

ABSTRACT

The photochemistry of small HX·(H(2)O)(n), n = 4 and 5 and X = F, Cl, and Br, clusters has been modeled by means of ab initio-based molecular simulations. The theoretical results were utilized to support our interpretation of photodissociation experiments with hydrogen halides on ice nanoparticles HX·(H(2)O)(n), n ≈ 10(2)-10(3). We have investigated the HX·(H(2)O)(n) photochemistry for three structural types: covalently bound structures (CBS) and acidically dissociated structures in a form of contact ion pair (CIP) and solvent separated pair (SSP). For all structures, we have modeled the electronic absorption spectra using the reflection principle combined with a path integral molecular dynamics (PIMD) estimate of the ground state density. In addition, we have investigated the solvent effect of water on the absorption spectra within the nonequilibrium polarizable continuum model (PCM) scheme. The major conclusion from these calculations is that the spectra for ionic structures CIP and SSP are significantly red-shifted with respect to the spectra of CBS structures. We have also studied the photodynamics of HX·(H(2)O)(n) clusters using the Full Multiple Spawning method. In the CBS structures, the excitation led to almost immediate release of the hydrogen atom with high kinetic energy. The light absorption in ionically dissociated species generates the hydronium radical (H(3)O) and halogen radical (X) within a charge-transfer-to-solvent (CTTS) excitation process. The hydronium radical ultimately decays into a water molecule and hydrogen atom with a characteristic kinetic energy irrespective of the hydrogen halide. We have also investigated the dynamics of an isolated and water-solvated H(3)O radical that we view as a central species in water radiation chemistry. The theoretical findings support the following picture of the HX photochemistry on ice nanoparticles investigated in our molecular beam experiments: HX is acidically dissociated in the ground state on ice nanoparticles, generating the CIP structure, which is then excited by the UV laser light into the CTTS states, followed by the H(3)O radical formation.

10.
Nat Chem ; 2(4): 274-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-21124507

ABSTRACT

Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.


Subject(s)
Electrons , Solvents/chemistry , Water/chemistry , Kinetics , Photoelectron Spectroscopy , Surface Properties , Thermodynamics
11.
J Phys Chem A ; 114(36): 9886-92, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20825242

ABSTRACT

State-to-state differential cross sections for rotationally inelastic He-H(2)O scattering have been measured at 53.3 meV (429 cm(-1)) collision energy, using the crossed molecular beam technique. The inelastic events are detected by velocity map imaging of nascent H(2)O(+) ions, which are formed by state-selective (2 + 1) resonance enhanced multiphoton ionization (REMPI) of the scattered H(2)O molecules. Raw density images are converted to flux images and the extracted differential cross sections are compared with full close-coupling calculations of state-to-state cross sections for rotational excitation based on a previously published ab initio potential. A hard-shell ellipsoid model is also employed to yield a more physical insight useful in interpreting the results. The excellent agreement of fully quantum theory and experiment found here for water collisions with helium at a collision energy relevant to that of the interstellar media place the theoretically determined potential energy surface and the collision cross sections extracted using this surface on a firmer basis.

12.
J Chem Phys ; 132(24): 244105, 2010 Jun 28.
Article in English | MEDLINE | ID: mdl-20590179

ABSTRACT

A computational approach capable of modeling homogeneous condensation in nonequilibrium environments is presented. The approach is based on the direct simulation Monte Carlo (DSMC) method, extended as appropriate to include the most important processes of cluster nucleation and evolution at the microscopic level. The approach uses a recombination-reaction energy-dependent mechanism of the DSMC method for the characterization of dimer formation, and the RRK model for the cluster evaporation. Three-step testing and validation of the model is conducted by (i) comparison of clusterization rates in an equilibrium heat bath with theoretical predictions for argon and water vapor and adjustment of the model parameters, (ii) comparison of the nonequilibrium argon cluster size distributions with experimental data, and (iii) comparison of the nonequilibrium water cluster size distributions with experimental measurements. Reasonable agreement was observed for all three parts of the validation.

13.
J Chem Phys ; 132(22): 221102, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20550381

ABSTRACT

A new class of sodium-water clusters with a low lying ionization potential (IP) is characterized by their photoionization spectra in molecular beam experiments. This implies that Na(H(2)O)(n) clusters coexist for n>or=15 in two forms of significant abundances being distinguished by their IPs of approximately 2.8 and approximately 3.2 eV. A tentative quantum chemical characterization was achieved by simulating ionization spectra for selected cluster sizes using an ab initio molecular dynamics approach. Experiment and theory suggest that the Na(+)-e(-) distance is significantly larger in the clusters with the lower IP. This indicates that the solvated electron in Na(H(2)O)(n) clusters very probably forms with the Na(+) counterion both a solvent separated and a contact ion pair.


Subject(s)
Electrons , Sodium/chemistry , Water/chemistry , Isomerism , Quantum Theory , Rotation
14.
J Phys Chem A ; 113(52): 14583-90, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19572685

ABSTRACT

The photodissociation of imidazole in hydrogen bonded clusters has been studied at photodissociation wavelengths 243 and 193 nm. Imidazole clusters of different mean cluster sizes n approximately 3 and 6 have been produced in expansions with He and Ar carrier gases, and the mean cluster sizes were determined by mass spectrometric and crossed beam scattering experiments. Simultaneously, the (C(3)N(2)H(4))(n) clusters were studied by ab initio calculations for n up to 4 molecules, confirming the hydrogen bond N-H...N motif in the clusters. The measured H-fragment kinetic energy distribution spectra exhibit a bimodal character similar to the KEDs found for the bare molecule. (1) At 243 nm the fast H-atoms originate from the direct dissociation process on the repulsive pi sigma* state, and the slow component results from the dynamics populating the vibrationally hot ground state via an S(1)/S(0) conical intersection. In the clusters the contribution of the slow component increases with the cluster size. The slow component is also dominant at the shorter wavelength of 193 nm, where the dynamics starts with the excitation of pi pi* state. It is shown that the slow component in our experiment is a product of subsequent two-photon absorption. We have proposed different mechanisms how the observed enhanced internal conversion can be rationalized. The increased stability with respect to the H-fragment dissociation in clusters can be caused either by hydrogen transfer in the N-H...N bond or by closing the pi sigma* dissociation channel as in the case of pyrrole clusters.


Subject(s)
Imidazoles/chemistry , Photochemical Processes , Hydrogen Bonding , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Conformation , Quantum Theory , Thermodynamics
15.
J Phys Chem A ; 113(26): 7322-30, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19368402

ABSTRACT

We have studied the multiphoton photodissociation of (C(2)H(2))(n) and (C(2)H(2))(n) x Ar(m) clusters in molecular beams. The clusters were prepared in supersonic expansions under various conditions, and the corresponding mean cluster sizes were determined, for which the photodissociation at 193 nm was studied. The measured kinetic energy distributions (KEDs) of the H fragment from acetylene in clusters peak around 0.2 eV, in agreement with the KED from an isolated C(2)H(2) molecule. However, the KEDs from the clusters extend to kinetic energies of over 2 eV, significantly higher than the maximum fragment energies from an isolated molecule of about 1 eV. The photofragment acceleration upon solvation is a rather unusual phenomenon. The analysis based on ab initio calculations suggests the following scenario: (i) At 193 nm, photodissociation of acetylene occurs mostly in the singlet manifold. (ii) The solvent stabilizes the acetylene molecule, preventing it from undergoing hydrogen dissociation and funneling the population into a vibrationally hot ground state. (iii) The excited C(2)H(2) absorbs the next photon and eventually dissociates, yielding the H fragment with a higher kinetic energy corresponding to the first C(2)H(2) excitation. Thus, the H-fragment KED extending to higher energies is a fingerprint of the cage effect and the multiphoton nature of the observed processes. The photon-flux dependence of the KEDs reflects the rate of the vibrational energy flow from the hot ground state of acetylene to the neighboring solvent molecules.

16.
J Phys Chem A ; 112(24): 5344-53, 2008 Jun 19.
Article in English | MEDLINE | ID: mdl-18507365

ABSTRACT

Extensive ab initio calculations complemented by a photodissociation experiment at 193 nm elucidate the nature of hydrogen halide molecules bound on free ice nanoparticles. Electronic absorption spectra of small water clusters (up to 5 water molecules) and water clusters doped with hydrogen fluoride, hydrogen chloride and hydrogen bromide were calculated. The spectra were modeled at the time-dependent density functional (TDDFT) level of theory with the BHandHLYP functional using the reflection principle. We observe the emergence of a charge-transfer-to-solvent (CTTS) band in the absorption spectra upon the acidic dissociation of the hydrogen halides. The CTTS band provides a spectroscopically observable feature for the acidic dissociation. The calculated spectra were compared with our new experimental photodissociation data for larger water clusters doped with HCl and HBr. We conclude that HCl and HBr dissociate to a large extent on the surface of ice nanoparticles at temperatures near 120 K and photoactive products are formed. The acidic dissociation of HX leads to an enhancement by about 4 orders of magnitude of the HCl photolysis rate in the 200-300 nm region, which is potentially relevant for the halogen budget in the atmosphere.

17.
J Chem Phys ; 128(15): 154306, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18433208

ABSTRACT

Ab initio molecular dynamics simulations modeling low-energy collisions of a sodium atom with a cluster with more than 30 water molecules are presented. We follow the dynamics of the atom-cluster interaction and the delocalization of the valence electron of sodium together with the changes in the electron binding energy. This electron tends to be shared by the nascent sodium cation and the water cluster. IR spectra of the sodium-water cluster are both computationally and experimentally obtained, with a good agreement between the two approaches.


Subject(s)
Models, Chemical , Models, Molecular , Sodium/chemistry , Spectrophotometry, Infrared/methods , Water/chemistry , Computer Simulation , Electron Transport , Electrons
18.
J Chem Phys ; 128(10): 104313, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18345894

ABSTRACT

We report on the first observation of the organoxenon HXeCCH molecule in the gas phase. This molecule has been prepared in a molecular beam experiment by 193 nm photolysis of an acetylene molecule on Xe(n) clusters (n approximately 390). Subsequently the molecule has been oriented via the pseudo-first-order Stark effect in a strong electric field of the polarized laser light combined with the weak electrostatic field in the extraction region of a time-of-flight spectrometer. The experimental evidence for the oriented molecule has been provided by measurements of its photodissociation. For comparison, photolysis of C(2)H(2) on Ar(n) clusters (n approximately 280) has been measured. Here the analogous rare gas molecule HArCCH could not be generated. The interpretation of our experimental findings has been supported by ab initio calculations. In addition, the experiment together with the calculations reveals information on the photochemistry of the HXeCCH molecule. The 193 nm radiation excites the molecule predominantly into the 2 (1)Sigma(+) state, which cannot dissociate the Xe-H bond directly, but the system evolves along the Xe-C coordinate to a conical intersection of a slightly nonlinear configuration with the dissociative 1 (1)Pi state, which then dissociates the Xe-H bond.

19.
Phys Chem Chem Phys ; 10(1): 83-95, 2008 Jan 07.
Article in English | MEDLINE | ID: mdl-18075686

ABSTRACT

Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.


Subject(s)
Ammonia/chemistry , Methanol/chemistry , Models, Chemical , Quantum Theory , Sodium/chemistry , Mass Spectrometry/methods , Models, Molecular , Molecular Structure , Solvents/chemistry , Water/chemistry
20.
J Phys Chem A ; 111(49): 12163-80, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-18052303
SELECTION OF CITATIONS
SEARCH DETAIL