Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Arq Neuropsiquiatr ; 82(10): 1-8, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39357852

ABSTRACT

BACKGROUND: High levels of physical conditioning are associated with improvements in cognitive performance. In this sense, electroencephalographic (ECG) correlates are used to investigate the enhancing role of physical exercise on executive functions. Oscillations in the ß frequency range are proposed to be evident during sensorimotor activity. OBJECTIVE: To investigate the ECG changes influenced by aerobic and resistance exercises performed in an attention task by analyzing the differences in absolute ß power in the prefrontal and frontal regions before, during, and after the oddball paradigm in practitioners and nonpractitioners of physical exercise. METHODS: There were 15 physical activity practitioners (aged 27 ± 4.71) and 15 nonpractitioners (age 28 ± 1.50) recruited. A two-way analysis of variance (ANOVA) was implemented to observe the main effect and the interaction between groups and moments (rest 1, pre-stimulus, and rest 2). RESULTS: An interaction between group and moment factors was observed for Fp1 (p < 0.001); Fp2 (p = 0.001); F7 (p < 0.001); F8 (p < 0.001); F3 (p < 0.001); Fz (p < 0.001); and F4 (p < 0.001). Electrophysiological findings clarified exercisers' specificity and neural efficiency in each prefrontal and frontal subarea. CONCLUSION: Our findings lend support to the current understanding of the cognitive processes underlying physical exercise and provide new evidence on the relationship between exercise and cortical activity.


ANTECEDENTES: Níveis elevados de condicionamento físico estão associados a melhorias no desempenho cognitivo. Nesse sentido, correlatos eletroencefalográficos são utilizados na investigação do papel aprimorador do exercício físico sobre as funções executivas. Tem sido proposto que as oscilações na faixa de frequência ß são evidenciadas durante a atividade sensório-motora. OBJETIVO: Investigar as alterações eletroencefalográficas influenciadas por exercícios aeróbio e resistido realizados em uma tarefa atencional analisando as diferenças da potência absoluta de ß nas regiões pré-frontal e frontal antes, na preparação e depois do paradigma oddball em praticantes e não praticantes de exercício físico. MéTODOS: Foram recrutados 15 praticantes de atividade física (idade 27 ± 4.71) e 15 não praticantes (idade 28 ± 1.50). Uma análise de variância (ANOVA) de duas vias foi implementada para observação do efeito principal e a interação entre os grupos e os momentos (repouso 1, pré-estímulo e repouso 2). RESULTADOS: Uma interação entre os fatores grupo e momento para Fp1 (p < 0,001); Fp2 (p = 0,001); F7 (p < 0,001); F8 (p < 0,001); F3 (p < 0,001); Fz (p < 0,001); e F4 (p < 0,001) foi observada. Os achados eletrofisiológicos esclareceram a especificidade e a eficiência neural dos praticantes de exercício físico em cada subárea pré-frontal e frontal. CONCLUSãO: Nossos achados promovem o entendimento atual dos processos cognitivos subjacentes ao exercício físico e acrescentam novas evidências sobre a relação exercício e atividade cortical.


Subject(s)
Beta Rhythm , Exercise , Humans , Adult , Male , Exercise/physiology , Analysis of Variance , Beta Rhythm/physiology , Female , Young Adult , Attention/physiology , Prefrontal Cortex/physiology , Cognition/physiology , Executive Function/physiology , Time Factors , Electroencephalography , Electrocardiography
2.
PLoS One ; 19(7): e0290142, 2024.
Article in English | MEDLINE | ID: mdl-38959207

ABSTRACT

AIM: This preliminary study investigated the differences in event-related potential and reaction time under two groups (athletes vs. non-athletes). MATERIAL AND METHODS: The P300 was analyzed for Fz, Cz, and Pz electrodes in thirty-one healthy volunteers divided into two groups (volleyball athletes and non-athletes). In addition, the participants performed a saccadic eye movement task to measure reaction time. RESULTS: The EEG analysis showed that the athletes, in comparison to the no-athletes, have differences in the P300 in the frontal area (p = 0.021). In relation to reaction time, the results show lower reaction time for athletes (p = 0.001). CONCLUSIONS: The volleyball athletes may present a greater allocation of attention during the execution of the inhibition task, since they have a lower reaction time for responses when compared to non-athletes.


Subject(s)
Athletes , Electroencephalography , Reaction Time , Saccades , Volleyball , Humans , Reaction Time/physiology , Saccades/physiology , Volleyball/physiology , Male , Female , Young Adult , Adult , Evoked Potentials/physiology , Event-Related Potentials, P300/physiology , Attention/physiology
3.
Arq Neuropsiquiatr ; 81(10): 876-882, 2023 10.
Article in English | MEDLINE | ID: mdl-37852289

ABSTRACT

BACKGROUND: The saccadic eye movement is responsible for providing focus to a visual object of interest to the retina. In sports like volleyball, identifying relevant targets quickly is essential to a masterful performance. The training improves cortical regions underlying saccadic action, enabling more automated processing in athletes. OBJECTIVE: We investigated changes in the latency during the saccadic eye movement and the absolute theta power on the frontal and prefrontal cortices during the execution of the saccadic eye movement task in volleyball athletes and non-athletes. We hypothesized that the saccade latency and theta power would be lower due to training and perceptual-cognitive enhancement in volleyball players. METHODS: We recruited 30 healthy volunteers: 15 volleyball athletes (11 men and 4 women; mean age: 15.08 ± 1.06 years) and 15 non-athletes (5 men and 10 women; mean age: 18.00 ± 1.46 years). All tasks were performed simultaneously with electroencephalography signal recording. RESULTS: The latency of the saccadic eye movement presented a significant difference between the groups; a shorter time was observed among the athletes, associated with the players' superiority in terms of attention level. During the experiment, the athletes observed a decrease in absolute theta power compared to non-athletes on the electrodes of each frontal and prefrontal area. CONCLUSION: In the present study, we observed the behavior of reaction time and absolute theta power in athletes and non-athletes during a saccadic movement task. Our findings corroborate the premise of cognitive improvement, mainly due to the reduction of saccadic latency and lower beta power, validating the neural efficiency hypothesis.


ANTECEDENTES: O movimento ocular sacádico é responsável por dar foco a um objeto visual de interesse para a retina. Em esportes como o vôlei, identificar alvos relevantes o mais rápido possível é essencial para se ter um desempenho magistral. O treinamento melhora as regiões corticais subjacentes à ação sacádica, e permite um processamento mais automatizado em atletas. OBJETIVO: Investigamos as mudanças na latência durante o movimento ocular sacádico e a potência teta absoluta nos córtices frontal e pré-frontal durante a execução da tarefa de movimento ocular sacádico em atletas e não atletas de voleibol. Nossa hipótese é a de que a latência sacádica e a potência teta seriam menores em atletas devido ao treinamento e ao aprimoramento perceptivo-cognitivo em jogadores de voleibol. MéTODOS: Ao todo, 30 voluntários saudáveis foram recrutados para este estudo: 15 atletas de voleibol (11 homens e 4 mulheres; idade média: 15,08 ± 1,06 anos) e 15 não atletas (5 homens e 10 mulheres; idade média: 18,00 ± 1,46 anos). Todas as tarefas foram realizadas simultaneamente com o registro do sinal eletroencefalográfico. RESULTADOS: O resultado da latência do movimento ocular sacádico apresentou diferença significativa entre os grupos, sendo observado menor tempo entre os atletas, associado à superioridade dos jogadores em termos de nível de atenção. Durante o experimento, nos eletrodos de cada área frontal e pré-frontal, observou-se uma diminuição na potência teta absoluta nos atletas em comparação aos não atletas. CONCLUSãO: Neste estudo, observou-se o comportamento do tempo de reação e da potência teta absoluta em atletas e não atletas durante uma tarefa de movimento sacádico. Nossos achados corroboram a premissa de melhora cognitiva, principalmente pela redução da latência sacádica e menor potência beta, o que valida a hipótese de eficiência neural.


Subject(s)
Saccades , Volleyball , Male , Humans , Female , Adolescent , Young Adult , Adult , Electroencephalography , Reaction Time , Athletes
4.
Article in English | MEDLINE | ID: mdl-37174139

ABSTRACT

Interval training (IT) is a very efficient method. We aimed to verify the chronic effects of IT with different intensities on hemodynamic, autonomic and cardiorespiratory variables in the elderly. Twenty-four physically active elderly men participated in the study and were randomized into three groups: Training Group A (TGA, n = 8), Training Group B (TGB, n = 8) and control group (CG, n = 8). The TGA and TGB groups performed 32 sessions (48 h interval). TGA presented 4 min (55 to 60% of HRmax) and 1 min (70 to 75% of HRmax). The TGB training groups performed the same protocol, but performed 4 min at 45 to 50% HRmax and 1 min at 60 to 65% HRmax. Both training groups performed each set six times, totaling 30 min per session. Assessments were performed pre (baseline) after the 16th and 32nd intervention session. The CG performed only assessments. Hemodynamic, autonomic and cardiorespiratory (estimated VO2max) variables were evaluated. There were no significant differences between protocols and times (p > 0.05). However, the effect size and percentage delta indicated positive clinical outcomes, indicating favorable responses of IT. IT may be a strategy to improve hemodynamic, autonomic and cardiorespiratory behavior in healthy elderly people.


Subject(s)
Hemodynamics , Oxygen Consumption , Male , Humans , Aged , Oxygen Consumption/physiology , Heart Rate/physiology
5.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;81(10): 876-882, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527879

ABSTRACT

Abstract Background The saccadic eye movement is responsible for providing focus to a visual object of interest to the retina. In sports like volleyball, identifying relevant targets quickly is essential to a masterful performance. The training improves cortical regions underlying saccadic action, enabling more automated processing in athletes. Objective We investigated changes in the latency during the saccadic eye movement and the absolute theta power on the frontal and prefrontal cortices during the execution of the saccadic eye movement task in volleyball athletes and non-athletes. We hypothesized that the saccade latency and theta power would be lower due to training and perceptual-cognitive enhancement in volleyball players. Methods We recruited 30 healthy volunteers: 15 volleyball athletes (11 men and 4 women; mean age: 15.08 ± 1.06 years) and 15 non-athletes (5 men and 10 women; mean age: 18.00 ± 1.46 years). All tasks were performed simultaneously with electroencephalography signal recording. Results The latency of the saccadic eye movement presented a significant difference between the groups; a shorter time was observed among the athletes, associated with the players' superiority in terms of attention level. During the experiment, the athletes observed a decrease in absolute theta power compared to non-athletes on the electrodes of each frontal and prefrontal area. Conclusion In the present study, we observed the behavior of reaction time and absolute theta power in athletes and non-athletes during a saccadic movement task. Our findings corroborate the premise of cognitive improvement, mainly due to the reduction of saccadic latency and lower beta power, validating the neural efficiency hypothesis.


Resumo Antecedentes O movimento ocular sacádico é responsável por dar foco a um objeto visual de interesse para a retina. Em esportes como o vôlei, identificar alvos relevantes o mais rápido possível é essencial para se ter um desempenho magistral. O treinamento melhora as regiões corticais subjacentes à ação sacádica, e permite um processamento mais automatizado em atletas. Objetivo Investigamos as mudanças na latência durante o movimento ocular sacádico e a potência teta absoluta nos córtices frontal e pré-frontal durante a execução da tarefa de movimento ocular sacádico em atletas e não atletas de voleibol. Nossa hipótese é a de que a latência sacádica e a potência teta seriam menores em atletas devido ao treinamento e ao aprimoramento perceptivo-cognitivo em jogadores de voleibol. Métodos Ao todo, 30 voluntários saudáveis foram recrutados para este estudo: 15 atletas de voleibol (11 homens e 4 mulheres; idade média: 15,08 ± 1,06 anos) e 15 não atletas (5 homens e 10 mulheres; idade média: 18,00 ± 1,46 anos). Todas as tarefas foram realizadas simultaneamente com o registro do sinal eletroencefalográfico. Resultados O resultado da latência do movimento ocular sacádico apresentou diferença significativa entre os grupos, sendo observado menor tempo entre os atletas, associado à superioridade dos jogadores em termos de nível de atenção. Durante o experimento, nos eletrodos de cada área frontal e pré-frontal, observou-se uma diminuição na potência teta absoluta nos atletas em comparação aos não atletas. Conclusão Neste estudo, observou-se o comportamento do tempo de reação e da potência teta absoluta em atletas e não atletas durante uma tarefa de movimento sacádico. Nossos achados corroboram a premissa de melhora cognitiva, principalmente pela redução da latência sacádica e menor potência beta, o que valida a hipótese de eficiência neural.

6.
Expert Rev Neurother ; 22(9): 771-780, 2022 09.
Article in English | MEDLINE | ID: mdl-36168890

ABSTRACT

INTRODUCTION: Exploring the potential of exercise in the rehabilitation process of patients with Parkinson's (PD) may be an interesting treatment perspective. Exercise-induced responses derived from neurotrophic elements appear to ameliorate the decline in neurodegeneration. Despite this understanding, the literature needs to be updated. AREAS COVERED: Our review focuses on: a) the key mechanisms of exercise on PD, highlighting mainly the responses related to neuroplasticity; b) the effects induced by different traditional types of exercise, also highlighting the effects of complementary therapies related to movement; c) the volume of exercise required to support efficient results are explored in the context of PD. Additionally, the proposition of new clinical application strategies in the context of PD will also be determined. EXPERT OPINION: It is suggested that different intensities of aerobic exercise be explored for the treatment of PD. The results associated with high intensity seem promising for performance, physiological and clinical parameters, such as BDNF production and cognition. On the other hand, the diversification of tasks and repetition of motor gestures appear as consistent arguments to exercise prescription. Finally, for future investigations, the neuromodulation strategy in association with aerobic exercise appears as a potential inducer of benefits on gait and cognitive function.


Subject(s)
Parkinson Disease , Humans , Exercise/physiology , Gait , Exercise Therapy/methods , Cognition
7.
Antioxidants (Basel) ; 11(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35624690

ABSTRACT

Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.

8.
Expert Rev Neurother ; 22(1): 53-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35077254

ABSTRACT

INTRODUCTION: In the last few decades, exercise has been explored as a potential tool to reduce symptoms experienced by patients with panic disorder (PD). This systematic review aims to assess the effects of regular exercise interventions on panic severity, global anxiety, and depression symptoms of these patients. AREAS COVERED: A search was conducted on PubMed, ISI Web of Science, and Cochrane Central Register of Controlled Trials using search terms related to PD and exercise. Eight trials were included, Furthermore, regular exercise programs presented different methodological characteristics. There is o clear evidence indicating that regular exercise programs (at least two 20-minute sessions per week for at least 6 weeks) reduce panic-related symptoms. Regular exercise is effective in improving global anxiety measures and depression. EXPERT OPINION: Continuous aerobic exercise is the main type of intervention in the literature, generally providing a limited prescription. Currently, it is recommended the interval training, with intense and shorter stimuli, and long-term duration trials. However, despite the use of self-selected intensities and control based on the internal load be interesting as recommendation to increase adherence, careful is needed regarding training prescription due to scarce evidence.


Subject(s)
Panic Disorder , Anxiety , Anxiety Disorders , Exercise , Exercise Therapy , Humans , Panic Disorder/therapy , Quality of Life
9.
J Strength Cond Res ; 36(4): 948-954, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34533487

ABSTRACT

ABSTRACT: Monteiro, ER, Pescatello, LS, Winchester, JB, Corrêa Neto, VG, Brown, AF, Budde, H, Marchetti, PH, Silva, JG, Vianna, JM, and Novaes, JdS. Effects of manual therapies and resistance exercise on postexercise hypotension in women with normal blood pressure. J Strength Cond Res 36(4): 948-954, 2022-The purpose of this investigation was to examine the acute effects of resistance exercise (RE) and different manual therapies (static stretching and manual massage [MM]) performed separately or combined on blood pressure (BP) responses during recovery in women with normal BP. Sixteen recreationally strength-trained women (age: 25.1 ± 2.9 years; height: 158.9 ± 4.1 cm; body mass: 59.5 ± 4.9 kg; body mass index: 23.5 ± 1.9 kg·m-2; baseline systolic BP median: 128 mm Hg; and baseline diastolic BP median: 78 mm Hg) were recruited. All subjects performed 6 experiments in a randomized order: (a) rest control (CON), (b) RE only (RE), (c) static-stretching exercise only (SS), (d) MM only, (e) RE immediately followed by SS (RE + SS), and (f) RE immediately followed by MM (RE + MM). RE consisted of 3 sets of bilateral bench press, back squat, front pull-down, and leg press exercises at 80% of 10RM. Static stretching and MM were applied unilaterally in 2 sets of 120 seconds to each of the quadriceps, hamstring, and calf regions. Systolic (SBP) and diastolic BP were measured before (rest) and every 10 minutes for 60 minutes following (Post 10-60) each intervention. There were significant intragroup differences for RE in Post-50 (p = 0.038; d = -2.24; ∆ = -4.0 mm Hg). Similarly, SBP intragroup differences were found for the SS protocol in Post-50 (p = 0.021; d = -2.67; ∆ = -5.0 mm Hg) and Post-60 (p = 0.008; d = -2.88; ∆ = -5.0 mm Hg). Still, SBP intragroup differences were found for the MM protocol in Post-50 (p = 0.011; d = -2.61; ∆ = -4.0 mm Hg) and Post-60 (p = 0.011; d = -2.74; ∆ = -4.0 mm Hg). Finally, a single SBP intragroup difference was found for the RE + SS protocol in Post-60 (p = 0.024; d = -3.12; ∆ = -5.0 mm Hg). Practitioners should be aware that SS and MM have the potential to influence BP responses in addition to RE or by themselves and therefore should be taken into consideration for persons who are hypertensive or hypotensive.


Subject(s)
Muscle Stretching Exercises , Post-Exercise Hypotension , Resistance Training , Adult , Blood Pressure/physiology , Female , Humans , Massage , Resistance Training/methods , Young Adult
10.
Eur J Neurosci ; 54(6): 5932-5950, 2021 09.
Article in English | MEDLINE | ID: mdl-34396611

ABSTRACT

The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that has been linked to the modulation of several physiological functions, including the sleep-wake cycle. The PPARα recognizes as endogenous ligands the lipids oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which in turn, if systemically injected, they exert wake-promoting effects. Moreover, the activation of PPARα by the administration of OEA or PEA increases the extracellular contents of neurotransmitters linked to the control of wakefulness; however, the role of PPARα activated by OEA or PEA on additional biochemicals related to waking regulation, such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), has not been fully studied. Here, we have investigated the effects of treatments of OEA or PEA on the contents of ACh and 5-HT by using in vivo microdialysis techniques coupled to HPLC means. For this purpose, OEA or PEA were systemically injected (5, 10 or 30 mg/kg; i.p.), and the levels of ACh and 5-HT were collected from the basal forebrain, a wake-related brain area. These pharmacological treatments significantly increased the contents of ACh and 5-HT as determined by HPLC procedures. Interestingly, PPARα antagonist MK-886 (30 mg/kg; i.p.) injected before the treatments of OEA or PEA blocked these outcomes. Our data suggest that the activation of PPARα by OEA or PEA produces significant changes on ACh and 5-HT levels measured from the basal forebrain and support the conclusion that PPARα is a suitable molecular element involved in the regulation of wake-related neurotransmitters.


Subject(s)
PPAR alpha , Serotonin , Acetylcholine , Amides , Brain/metabolism , Endocannabinoids , Ethanolamines , Oleic Acids , PPAR alpha/metabolism , Palmitic Acids
11.
Curr Top Med Chem ; 21(11): 964-975, 2021.
Article in English | MEDLINE | ID: mdl-34061003

ABSTRACT

The peroxisome proliferator activated receptors (PPARs) are a superfamily of well-recognized ligand-binding nuclear receptors comprising three isoforms: PPARα, PPARγ, and PPARß/δ. In response to endogenous lipid messengers, PPARs trigger the transcription of genes related to a wider spectrum of physiological phenomena, including fatty acid oxidation, inflammation, adipogenesis, among many others. Thus, the importance of PPARs as putative protective therapy in health issues has increased the interest of studying these nuclear receptors, including the management of neurodegenerative disorders, multiple sclerosis, and likely addiction. In recent years, several pieces of evidence from animal models have demonstrated the promising role of PPARs as a critical element for interventions in addictive behaviors by reducing the reinforcing properties of addictive substances such as alcohol. However, there is a lack of data in the scope and has so far been unexplored the function of PPARs in additional drugs such as cannabis, opioids, methamphetamine, or cocaine. A similar scenario has been found for the management of binge-type eating disorders. Thus, here we review recent advances in understanding the relevance of the PPAR controlling addiction.


Subject(s)
Behavior, Addictive/drug therapy , Molecular Targeted Therapy/methods , Peroxisome Proliferator-Activated Receptors/metabolism , Pharmaceutical Preparations/metabolism , Alcohols/metabolism , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Cannabis/metabolism , Cocaine/metabolism , Cocaine/pharmacology , Humans , Ligands , Methamphetamine/metabolism , Methamphetamine/pharmacology , Neurodegenerative Diseases/drug therapy , Nicotine/metabolism , Oxidation-Reduction , Protein Isoforms , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism
12.
Article in English | MEDLINE | ID: mdl-33741446

ABSTRACT

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Subject(s)
Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/therapeutic use , Controlled Substances/chemical synthesis , Receptor, Cannabinoid, CB1/agonists , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/therapeutic use , Cannabinoids/chemical synthesis , Cannabinoids/therapeutic use , Controlled Substances/administration & dosage , Cyclohexanols/chemical synthesis , Cyclohexanols/therapeutic use , Dronabinol/analogs & derivatives , Dronabinol/chemical synthesis , Dronabinol/therapeutic use , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Pain/drug therapy , Pain/metabolism , Phenanthridines/chemical synthesis , Phenanthridines/therapeutic use , Receptor, Cannabinoid, CB1/metabolism
13.
Psychopharmacology (Berl) ; 238(6): 1437-1447, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33635384

ABSTRACT

RATIONALE: The medical uses of cannabidiol (CBD), a constituent of the Cannabis sativa, have accelerated the legal and social acceptance for CBD-based medications but has also given the momentum for questioning whether the long-term use of CBD during the early years of life may induce adverse neurobiological effects in adulthood, including sleep disturbances. Given the critical window for neuroplasticity and neuro-functional changes that occur during stages of adolescence, we hypothesized that CBD might influence the sleep-wake cycle in adult rats after their exposure to CBD during the adolescence. OBJECTIVES: Here, we investigated the effects upon behavior and neural activity in adulthood after long-term administrations of CBD in juvenile rats. METHODS: We pre-treated juvenile rats with CBD (5 or 30 mg/Kg, daily) from post-natal day (PND) 30 and during 2 weeks. Following the treatments, the sleep-wake cycle and NeuN expression was analyzed at PND 80. RESULTS: We found that systemic injections of CBD (5 or 30 mg/Kg, i.p.) given to adolescent rats (post-natal day 30) for 14 days increased in adulthood the wakefulness and decreased rapid eye movement sleep during the lights-on period whereas across the lights-off period, wakefulness was diminished and slow wave sleep was enhanced. In addition, we found that adult animals that received CBD during the adolescence displayed disruptions in sleep rebound period after total sleep deprivation. Finally, we determined how the chronic administrations of CBD during the adolescence affected in the adulthood the NeuN expression in the suprachiasmatic nucleus, a sleep-related brain region. CONCLUSIONS: Our findings are relevant for interpreting results of adult rats that were chronically exposed to CBD during the adolescence and provide new insights into how CBD may impact the sleep-wake cycle and neuronal activity during developmental stages.


Subject(s)
Cannabidiol/administration & dosage , Sleep Wake Disorders/chemically induced , Sleep/drug effects , Wakefulness/drug effects , Animals , Brain/drug effects , Cannabis/chemistry , Male , Neurons/drug effects , Rats , Rats, Wistar , Sleep Deprivation , Sleep, REM/drug effects
14.
Brain Struct Funct ; 226(4): 1185-1193, 2021 May.
Article in English | MEDLINE | ID: mdl-33598759

ABSTRACT

This study investigated the effects of dopaminergic drugs on the EEG mu power during motor imagery, action observation, and execution. This is a double-blind, crossover study with a sample of 15 healthy adults under placebo vs. methylphenidate vs. risperidone conditions during motor imagery, action observation, and execution tasks. The participants had drug dosage adjustment based on body weight/dose (mg/kg). We also analyzed the mu band power by electroencephalography during the study steps. The main result is the interaction between the condition and task factors for the C3 and C4 electrodes, with decreasing EEG mu power in the methylphenidate when compared to risperidone (p ≤ 0.0083). Our results can indicate that the methylphenidate decreases the neurophysiological activity in the central cortical regions during the perceptual experience of tasks with or without body movement.


Subject(s)
Motor Cortex , Adult , Cross-Over Studies , Electroencephalography , Humans , Imagination , Methylphenidate/pharmacology , Movement , Risperidone/pharmacology
15.
Neurol Sci ; 42(6): 2309-2316, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33037974

ABSTRACT

BACKGROUND: The current study is a reanalysis in the time domain of EEG data collection in healthy adults during an oddball paradigm using levetiracetam (LEV) vs. placebo acute administration. Specifically, the event-related potential (ERP) technique provides a tool for exploring the EEG responses to a specific event/stimulus. One of the ERP components widely studied is the P300 component, which is associated with the last stage of information processing and a general measurement of "cognitive efficiency." METHODS: The sample was composed of thirteen healthy right-handed individuals randomized to participate under two conditions: LEV and placebo. Electrophysiological measures were collected before and after drug intake. We explored the oddball paradigm, which is commonly used with healthy individuals to investigate the stages of information processing. RESULTS: The electrophysiological results showed a main effect of condition on P300 amplitude for the frontal (F3, Fz, F4), central (C3, Cz, C4), and parietal electrodes (P3, Pz, P4). The post hoc comparisons (Scheffé's test) demonstrated the significant differences between electrodes. Regarding P300 latency, all regions represented a main effect of condition. A P300 latency reduction was observed during LEV condition compared with placebo. CONCLUSION: Our study observed the ERP component-P300-through the variation of its amplitude and latency to evaluate a supposed higher CNS efficiency when participants were under the LEV effect. Our findings sustain this premise, mainly due to reducing in P300 latency for the LEV condition, supporting the neural efficiency hypothesis.


Subject(s)
Cognition/drug effects , Electroencephalography , Evoked Potentials , Levetiracetam/pharmacology , Adult , Event-Related Potentials, P300 , Humans , Reaction Time
16.
Front Psychol ; 11: 593903, 2020.
Article in English | MEDLINE | ID: mdl-33329256

ABSTRACT

Physical exercise is seen as the main ally for health promotion, preventing and protecting the organism from several diseases. According to WHO, there is a tendency of constant growth in the elderly population in the coming years. The regular practice of exercises by the elderly becomes relevant to minimize the deleterious effects of the aging process and to increase the fitness index. Recently, the world population started a confrontation against Corona Virus Disease (COVID-19), which is the most significant public health challenge globally. Although social isolation is a reasonable measure in an attempt to stop contamination by COVID-19, this measure has limited the ability of individuals to exercise outdoors or in gyms and health clubs, which increased the risk of developing chronic illnesses related to a sedentary lifestyle. The critical point is that the recent recommendations on exercise prescription to combat the potentially harmful effects of COVID-19 failure to adequately address resistance exercise interventions as home-based exercise strategy. Thus, in this paper, we discussed the physical exercise as medicine if the training status is enough to protect the elderly against COVID-19 infection, about the role of physical activity on immunosuppression. Possible risks for COVID-19 infection, and the old training methods, such as no-load resistance training as possible resistance exercise strategies and high-intensity interval training, as new proposals of home-based exercise interventions, could perform during the current COVID-19 pandemic.

18.
Expert Rev Neurother ; 20(11): 1099-1107, 2020 11.
Article in English | MEDLINE | ID: mdl-32762382

ABSTRACT

INTRODUCTION: Similar effects in reducing the symptoms of the mood disorder are reported in the literature compared the action of drugs and aerobic exercise sessions, demonstrating the potential of exercise in the control and mood stabilization. Therefore, there are many reasons to believe that the increased cardiorespiratory fitness (VO2max) can be an important means of protection and a reducing potential of physical and mental damage in bipolar disorders (BD). This review will highlight the current pattern of response of exercise on the pathophysiology of BD, relating the possible mechanisms, and hypotheses based on exercises. AREAS COVERED: The mechanism of monoaminergic action and its relationship with exercise, role of physical conditioning and increased VO2Max on neurotrophin release, and new perspectives on long-term exercise will be reviewed. EXPERT OPINION: The adaptations to training, although little explored in the context of BD, can induce the expression of substances that co-regulate several processes related to the pathophysiology of BD. Furthermore, high intensity interval training (HIIT) can also be adjusted to improve the physical fitness and health in patients with BD. Future research is needed to adopt a training strategy that is both time efficient and adequate for the population in question.


Subject(s)
Bipolar Disorder/metabolism , Bipolar Disorder/therapy , Exercise Therapy , Health Promotion , High-Intensity Interval Training , Exercise Therapy/methods , High-Intensity Interval Training/methods , Humans
19.
Front Physiol ; 11: 739, 2020.
Article in English | MEDLINE | ID: mdl-32848808

ABSTRACT

The aim of this review is to demonstrate the effects of cardiovascular interval training (IT) on healthy elderly subjects. We used the recommendations of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The following variables were observed: resting heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MBP), heart rate variability (HRV), baroreflex activity (BA), and maximal oxygen uptake (VO2max). Studies were searched for in the MedLine, PubMed, and Sport Discus databases considering publications between 1990 and 2019. To find the studies, the keywords used were "Interval and Elderly Training" or "Interval Training and Baroreflex Sensing" or "Interval Training and Aging and Pressure Arterial and Blood Pressure Training" or "Interval Training and Variation in Aging and Heart Rate" or "Interval Training and Sensitivity to the Elderly and Baroreflex" or "Interval Training and Variability in the Elderly and Heart Rate." The systematic search identified 1,140 hits. The analysis of the study was performed through a critical review of the content. One thousand one hundred forty articles were identified. Of these, 1,108 articles were excluded by checking the articles and abstracts. Finally, 32 studies were selected for full reading while 26 studies were eliminated because they did not contain a methodology according to the purpose of this review. Thus, six studies were included for the final analysis. The PEDro score was used for analyzing the study quality and found 4,8 ± 1,3 points (range: 3-6). Positive results were found with the different IT protocols in the observed variables. Results show that IT protocols can be an efficient method for functional improvement of cardiovascular and cardiorespiratory variables in the healthy elderly, especially HR, SBP, DBP, MAP, HRV, BA, and VO2max. However, this method can be included in the prescription of aerobic training for the elderly to obtain conditional improvements in the cardiovascular system, thus being an important clinical intervention for the public.

20.
Psychopharmacology (Berl) ; 237(7): 2055-2073, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32472163

ABSTRACT

RATIONALE: The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. OBJECTIVES: We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. METHODS: The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. RESULTS: Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. CONCLUSIONS: The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.


Subject(s)
Bexarotene/pharmacology , Coumaric Acids/pharmacology , Retinoid X Receptors/metabolism , Sleep Stages/drug effects , Sleep Stages/physiology , Tetrahydronaphthalenes/pharmacology , Animals , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/agonists , Retinoid X Receptors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL