Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 407: 124392, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33162242

ABSTRACT

In this study, a sub-class of microporous crystalline metal organic frameworks (MOFs) with zeolite-like configurations, i.e., zeolitic imidazolate frameworks of single node ZIF-67 and binary nodes ZIF-Co/Zn are used as the supports to develop Cu nanoparticles based nanocatalysts. Their catalytic activities are comparatively evaluated where Cu(x)@ZIF-Co/Zn exhibits better performances than Cu(x)@ZIF-67 in the reduction of synthetic dyes and nitroarenes. For instance, the Cu(0.25)@ZIF-Co/Zn catalyst shows an excellent reaction rate of 2.088 × 10-2 s-1 and an outstanding activity of 104.4 s-1gcat-1 for the reduction of methyl orange. The same catalyst also performs an exceptional catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol with the activity of 216.5 s-1gcat-1. A synergistic role of unique electronic properties rising from the direct contact of Cu NPs with the bimetallic nodes ZIF-Co/Zn, higher surface area of support, appropriate Cu loading and maintainable microporous frameworks with higher thermal and hydrolytic stability collectively enhances the catalytic activity of Cu(x)@ZIF-Co/Zn. Moreover, this catalyst shows excellent stability and recyclability, which can retain high conversion after reuse for 10 cycles.

2.
J Hazard Mater ; 384: 121270, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31585289

ABSTRACT

Highly active Ag-doped Ni nanoparticles are successfully fabricated within carboxylic acid (-COOH) functionalized mesoporous silica SBA-16 by a facile wet incipient technique for catalytic conversion of toxic nitroaromatics. The -COOH groups on SBA-16 play a crucial role by enhancing the electrostatic interactions with Ag(I)/Ni(II) cations, that control the crystal growth during the thermal reduction. Systematic characterizations of SBA-16C and Agx%Ni@SBA-16C are performed by different techniques including solid state 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N2 sorption, X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and superconducting quantum interference device (SQUID). The highly dispersed ultrafine Ag-doped Ni NPs (∼3 nm) are well-confined within SBA-16C and exhibit magnetic properties that are extremely beneficial for recycling. The bimetallic Ag2.4%Ni@SBA-16C shows exceptionally high catalytic activity during catalytic conversion of toxic nitroaromatics to environmentally friendly amino-aromatics. The enhanced catalytic activity could be ascribed to the combined effects of unique electronic properties, synergistic effects of Ag-doped Ni, ultra-small size, metal loading, and favorable textural properties. These magnetically separable nanocatalysts show excellent durability.

3.
Chemistry ; 24(51): 13540-13548, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-29974578

ABSTRACT

Carboxylic acid functionalized 3D cage-type mesoporous silica FDU-12 with high surface area and pore volume was synthesized by a one-pot co-condensation method and used as support to synthesize Pt nanoparticles (NPs). The uniformly distributed COOH groups in the cage can control the growth of Pt NPs with high dispersion (Pt@CF-12). Pt@CF-12 was used as catalyst for the hydrolysis of ammonia borane to generate H2 and for the reduction of 4-nitrophenol to 4-aminophenol. The catalyst exhibits higher catalytic activity (H2 generation rate of 17.8 L H2 min-1 gcat-1 ) and lower activation energy of 30.67 kJ mol-1 compared with other Pt-based silica catalysts due to the small size of the Pt NPs (3.5 nm) and cage-type porous structure of the support, which allowed easy diffusion of reactants. Pt@CF-12 has excellent durability, since the support prevented NP aggregation and leaching of NPs during catalysis. Pt@CF-12 can convert 93 % of 4-nitrophenol to 4-aminophenol within 10 min.

4.
ChemSusChem ; 9(17): 2326-31, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27531065

ABSTRACT

Ni nanoparticles (around 4 nm diameter) were successfully supported on cage-type mesoporous silica SBA-16 (denoted as Ni@SBA-16) via wet impregnation at pH 9, followed by the calcination-reduction process. The Ni@SBA-16 catalyst with a very high Ni loading amount (22.9 wt %) exhibited exceptionally high CH4 selectivity for CO2 hydrogenation. At a nearly identical loading amount, the Ni@SBA-16 catalysts with smaller particle size of Ni NPs surprisingly exhibited a higher catalytic activity of CO2 hydrogenation and also led to a higher selectivity on CH4 formation than the Ni@SiO2 catalysts. This enhanced activity of the Ni@SBA-16 catalyst is suggested to be an accumulative result of the advantageous structural properties of the support SBA-16 and the well confined Ni NPs within the support; both induced a favorable reaction pathway for high selectivity of CH4 in CO2 hydrogenation.


Subject(s)
Carbon Dioxide/chemistry , Metal Nanoparticles/chemistry , Methane/chemistry , Nickel/chemistry , Silicon Dioxide/chemistry , Catalysis , Hydrogenation , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL