Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(11): 766, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38001089

ABSTRACT

Tumor suppressor p53 plays a central role in response to DNA damage. DNA-damaging agents modulate nuclear actin dynamics, influencing cell behaviors; however, whether p53 affects the formation of nuclear actin filaments remains unclear. In this study, we found that p53 depletion promoted the formation of nuclear actin filaments in response to DNA-damaging agents, such as doxorubicin (DOXO) and etoposide (VP16). Even though the genetic probes used for the detection of nuclear actin filaments exerted a promotive effect on actin polymerization, the detected formation of nuclear actin filaments was highly dependent on both p53 depletion and DNA damage. Whilst active p53 is known to promote caspase-1 expression, the overexpression of caspase-1 reduced DNA damage-induced formation of nuclear actin filaments in p53-depleted cells. In contrast, co-treatment with DOXO and the pan-caspase inhibitor Q-VD-OPh or the caspase-1 inhibitor Z-YVAD-FMK induced the formation of nuclear actin filament formation even in cells bearing wild-type p53. These results suggest that the p53-caspase-1 axis suppresses DNA damage-induced formation of nuclear actin filaments. In addition, we found that the expression of nLifeact-GFP, the filamentous-actin-binding peptide Lifeact fused with the nuclear localization signal (NLS) and GFP, modulated the structure of nuclear actin filaments to be phalloidin-stainable in p53-depleted cells treated with the DNA-damaging agent, altering the chromatin structure and reducing the transcriptional activity. The level of phosphorylated H2AX (γH2AX), a marker of DNA damage, in these cells also reduced upon nLifeact-GFP expression, whilst details of the functional relationship between the formation of nLifeact-GFP-decorated nuclear actin filaments and DNA repair remained to be elucidated. Considering that the loss of p53 is associated with cancer progression, the results of this study raise a possibility that the artificial reinforcement of nuclear actin filaments by nLifeact-GFP may enhance the cytotoxic effect of DNA-damaging agents in aggressive cancer cells through a reduction in gene transcription.


Subject(s)
Actins , Tumor Suppressor Protein p53 , Actins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Actin Cytoskeleton/metabolism , DNA Damage , Caspases/metabolism , DNA/metabolism
2.
Genes Cells ; 28(9): 653-662, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37264202

ABSTRACT

Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Neoplasms , Humans , Extracellular Signal-Regulated MAP Kinases/metabolism , Apoptosis , Iron Chelating Agents/pharmacology , Cell Line, Tumor
3.
Bioengineering (Basel) ; 7(1)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093160

ABSTRACT

The extracellular matrix (ECM) surrounding cancer cells becomes stiffer during tumor progression, which influences cancer cell behaviors such as invasion and proliferation through modulation of gene expression as well as remodeling of the actin cytoskeleton. In this study, we show that MMP24 encoding matrix metalloproteinase (MMP)-24 is a novel target gene of Yes-associated protein (YAP), a transcription coactivator known as a mechanotransducer. We first examined the effect of substrate stiffness on MMP24 expression in MCF-7 human breast cancer cells and showed that the expression of MMP24 was significantly higher in cells grown on stiff substrates than that on soft substrates. The MMP24 expression was significantly reduced by knockdown of YAP. In contrast, the expression of constitutively active YAP increased MMP24 promoter activity. In addition, binding of YAP to the MMP24 promoter was confirmed by the chromatin immunoprecipitation (ChIP) assay. These results show that ECM stiffening promotes YAP activation, thereby inducing MMP24 expression. Based on the Human Protein Atlas database, breast cancer patients with lower MMP24 expression exhibit the worse survival rates overall. Thus, MMP24 may negatively regulate the aggressiveness of cancer cells under the stiff ECM environment during tumor progression.

4.
Molecules ; 24(17)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480541

ABSTRACT

Tumor suppressor p53 plays an integral role in DNA-damage induced apoptosis, a biological process that protects against tumor progression. Cell shape dramatically changes when cells undergo apoptosis, which is associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agents. To identify a novel p53 regulating gene encoding the modulator of myosin, we conducted DNA microarray analysis. We found that, in response to DNA-damaging agent doxorubicin, expression of myotonic dystrophy protein kinase (DMPK), which is known to upregulate actomyosin contraction, was increased in a p53-dependent manner. The promoter region of DMPK gene contained potential p53-binding sequences and its promoter activity was increased by overexpression of the p53 family protein p73, but, unexpectedly, not of p53. Furthermore, we found that doxorubicin treatment induced p73 expression, which was significantly attenuated by downregulation of p53. These data suggest that p53 induces expression of DMPK through upregulating p73 expression. Overexpression of DMPK promotes contraction of the actomyosin cortex, which leads to formation of membrane blebs, loss of cell adhesion, and concomitant caspase activation. Taken together, our results suggest the existence of p53-p73-DMPK axis which mediates DNA-damage induced actomyosin contraction at the cortex and concomitant cell death.


Subject(s)
Myotonin-Protein Kinase/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Caspases/metabolism , Cell Adhesion/drug effects , Cell Death/drug effects , Doxorubicin/pharmacology , Enzyme Activation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , MCF-7 Cells , Mice , Myotonin-Protein Kinase/genetics , Promoter Regions, Genetic , Tumor Protein p73/metabolism
5.
PLoS Genet ; 12(5): e1006048, 2016 05.
Article in English | MEDLINE | ID: mdl-27176626

ABSTRACT

The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development.


Subject(s)
Abnormalities, Multiple/genetics , Caenorhabditis elegans/genetics , Cell Differentiation/genetics , Ductus Arteriosus, Patent/genetics , Embryonic Development/genetics , Face/abnormalities , Fingers/abnormalities , Transcription Factor AP-2/genetics , Abnormalities, Multiple/pathology , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cell Lineage/genetics , Ductus Arteriosus, Patent/pathology , Epidermis/growth & development , Face/pathology , Fingers/pathology , Humans , Morphogenesis/genetics , Mutation , Neural Stem Cells/metabolism
6.
PLoS Genet ; 11(3): e1005082, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25807459

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a post-translational modification resulting in the attachment of modified proteins to the outer leaflet of the plasma membrane. Tissue culture experiments have shown GPI-anchored proteins (GPI-APs) to be targeted to the apical membrane of epithelial cells. However, the in vivo importance of this targeting has not been investigated since null mutations in GPI biosynthesis enzymes in mice result in very early embryonic lethality. Missense mutations in the human GPI biosynthesis enzyme pigv are associated with a multiple congenital malformation syndrome with a high frequency of Hirschsprung disease and renal anomalies. However, it is currently unknown how these phenotypes are linked to PIGV function. Here, we identify a temperature-sensitive hypomorphic allele of PIGV in Caenorhabditis elegans, pigv-1(qm34), enabling us to study the role of GPI-APs in development. At the restrictive temperature we found a 75% reduction in GPI-APs at the surface of embryonic cells. Consequently, ~80% of pigv-1(qm34) embryos arrested development during the elongation phase of morphogenesis, exhibiting internal cysts and/or surface ruptures. Closer examination of the defects revealed them all to be the result of breaches in epithelial tissues: cysts formed in the intestine and excretory canal, and ruptures occurred through epidermal cells, suggesting weakening of the epithelial membrane or membrane-cortex connection. Knockdown of piga-1, another GPI biosynthesis enzymes resulted in similar phenotypes. Importantly, fortifying the link between the apical membrane and actin cortex by overexpression of the ezrin/radixin/moesin ortholog ERM-1, significantly rescued cyst formation and ruptures in the pigv-1(qm34) mutant. In conclusion, we discovered GPI-APs play a critical role in maintaining the integrity of the epithelial tissues, allowing them to withstand the pressure and stresses of morphogenesis. Our findings may help to explain some of the phenotypes observed in human syndromes associated with pigv mutations.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Cytoskeletal Proteins/genetics , Embryonic Development/genetics , Glycosylphosphatidylinositols/biosynthesis , Hirschsprung Disease/genetics , Mannosyltransferases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/metabolism , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Glycosylphosphatidylinositols/genetics , Hirschsprung Disease/metabolism , Humans , Mannosyltransferases/biosynthesis , Mannosyltransferases/metabolism , Mice , Mutation , Protein Processing, Post-Translational/genetics , Temperature
7.
Dev Dyn ; 239(12): 3285-96, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21089077

ABSTRACT

The early Caenorhabditis elegans embryo is an attractive model to investigate evolutionarily conserved cellular mechanisms. However, there is a paucity of automated methods to gather quantitative information with subcellular precision in this system. We developed ASSET (Algorithm for the Segmentation and the Standardization of C. elegans Time-lapse recordings) to fill this need. ASSET automatically detects the eggshell and the cell cortex from DIC time-lapse recordings of live one-cell-stage embryos and can also track subcellular structures using fluorescent time-lapse microscopy. Importantly, ASSET standardizes the data into an absolute coordinate system to allow robust quantitative comparisons between embryos. We illustrate how ASSET can efficiently gather quantitative data on the motion of centrosomes and precisely track cortical invaginations, revealing hitherto unnoticed differences between wild-type and saps-1(RNAi) embryos. In summary, we establish ASSET as a novel tool for the efficient quantification and standardization of images from early C. elegans embryos.


Subject(s)
Algorithms , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Animals , Embryo, Nonmammalian , Microscopy, Fluorescence
8.
Development ; 136(17): 2861-72, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19666818

ABSTRACT

The core machinery that drives the eukaryotic cell cycle has been thoroughly investigated over the course of the past three decades. It is only more recently, however, that light has been shed on the mechanisms by which elements of this core machinery are modulated to alter cell cycle progression during development. It has also become increasingly clear that, conversely, core cell cycle regulators can play a crucial role in developmental processes. Here, focusing on findings from Drosophila melanogaster and Caenorhabditis elegans, we review the importance of modulating the cell cycle during development and discuss how core cell cycle regulators participate in determining cell fates.


Subject(s)
Cell Cycle/physiology , Growth and Development , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/physiology , Cell Lineage , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Embryonic Development/physiology , Eukaryotic Cells/physiology
9.
Development ; 135(7): 1303-13, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18305005

ABSTRACT

Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis elegans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanisms by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL-1/CHK-1 dependent checkpoint in P1, but how the remaining time difference is controlled is not known. Here, we establish that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by A-P polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1, but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, our findings support a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1-dependent preferential retardation in P1 and PLK-1-dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development.


Subject(s)
Caenorhabditis elegans/embryology , Caenorhabditis elegans/physiology , Cell Cycle Proteins/metabolism , Cell Division , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/cytology , Cell Polarity/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Mitosis/physiology , Models, Biological , Polo-Like Kinase 1
10.
EMBO Rep ; 6(9): 866-72, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16113653

ABSTRACT

The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle checkpoint function in a JNK-independent fashion. SP600125 potently inhibits activity of the mitotic checkpoint kinase monopolar spindle 1 (Mps1) in vitro and triggers efficient progression through a mitotic arrest imposed by spindle poisons. Importantly, expression of an Mps1 mutant protein refractory to SP600125-mediated inhibition restores spindle checkpoint function in the presence of SP600125, showing that its mitotic phenotype is induced by Mps1 inhibition in vivo. Remarkably, primary human cells are largely resistant to the checkpoint-inactivating action of SP600125, suggesting the existence of Mps1-independent checkpoint pathways that are compromised in tumour cells.


Subject(s)
Anthracenes/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Mitogen-Activated Protein Kinase 8/metabolism , Mitosis/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Spindle Apparatus/physiology , Amino Acid Sequence , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Fibroblasts , Fluorescent Antibody Technique , Humans , Immunoblotting , Mice , Mitogen-Activated Protein Kinase 8/genetics , Molecular Sequence Data , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases , Spindle Apparatus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...