Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 23(44): 10516-10521, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28631435

ABSTRACT

Planar hydrocarbon-like metal clusters may foster new insights linking organic molecules with conjugated π-π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr5 Co2 Ge3 and Pr7 Co2 Ge4 , both of which feature such planar metal clusters, namely, ethylene-like [Co2 Ge4 ] clusters plus the concatenated forms and polyacene-like [Co2 Ge2 ]n ribbons in Pr5 Co2 Ge3 , and 1,2,4,5-tetramethylbenzene-like [Co4 Ge6 ] cluster in Pr7 Co2 Ge4 . Just as in the related planar organic structures, these metal-metalloid species are dominated by covalent bonding interactions. Both compounds magnetically order at low temperature with net ferromagnetic components: Pr5 Co2 Ge3 through a series of transitions below 150 K and Pr7 Co2 Ge4 through a single ferromagnetic transition at 19 K. Spin-polarized electronic structure calculations for Pr7 Co2 Ge4 reveal strong spin-orbit coupling within Pr and considerable magnetic contributions from Co atoms. This work suggests that similar structural chemistry can emerge for other rare-earth/late-transition-metal/main-group systems.

2.
PLoS One ; 10(6): e0129566, 2015.
Article in English | MEDLINE | ID: mdl-26075913

ABSTRACT

A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.


Subject(s)
Apoptosis/drug effects , Glutathione Reductase/metabolism , High-Throughput Screening Assays , Oxidative Stress , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Discovery , Glutathione/metabolism , Glutathione Reductase/antagonists & inhibitors , Humans , Mice , Reactive Oxygen Species , Small Molecule Libraries
3.
Sci Am ; 292(4): 62-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15915816
SELECTION OF CITATIONS
SEARCH DETAIL
...