Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39096902

ABSTRACT

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.

2.
Immunity ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39151426

ABSTRACT

Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.

3.
Acta Neuropathol ; 148(1): 11, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060438

ABSTRACT

The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.


Subject(s)
Brain , COVID-19 , Immunity, Innate , Humans , COVID-19/immunology , Immunity, Innate/immunology , Brain/immunology , Brain/pathology , Male , Female , Middle Aged , Aged , Microglia/immunology , Microglia/pathology , Adult , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Cicatrix/immunology , Cicatrix/pathology , Machine Learning
4.
Nat Cell Biol ; 26(8): 1261-1273, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969763

ABSTRACT

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.


Subject(s)
Endoplasmic Reticulum , Fatty Acids , Inflammation , Lipid Droplets , Lipid Metabolism , Macrophages , Mitochondria , Macrophages/metabolism , Animals , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Inflammation/pathology , Fatty Acids/metabolism , Peroxisomes/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Organelles/metabolism
5.
J Clin Invest ; 134(16)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916965

ABSTRACT

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Animals , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Mice , Hematopoietic Stem Cell Transplantation , Graft vs Leukemia Effect/immunology , Graft vs Leukemia Effect/genetics , Humans , Allografts , Ligands , Oncogenes , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Gene Expression Regulation, Leukemic
6.
J Vis Exp ; (204)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38465941

ABSTRACT

Cellular function critically depends on metabolism, and the function of the underlying metabolic networks can be studied by measuring small molecule intermediates. However, obtaining accurate and reliable measurements of cellular metabolism, particularly in rare cell types like hematopoietic stem cells, has traditionally required pooling cells from multiple animals. A protocol now enables researchers to measure metabolites in rare cell types using only one mouse per sample while generating multiple replicates for more abundant cell types. This reduces the number of animals that are required for a given project. The protocol presented here involves several key differences over traditional metabolomics protocols, such as using 5 g/L NaCl as a sheath fluid, sorting directly into acetonitrile, and utilizing targeted quantification with rigorous use of internal standards, allowing for more accurate and comprehensive measurements of cellular metabolism. Despite the time required for the isolation of single cells, fluorescent staining, and sorting, the protocol can preserve differences among cell types and drug treatments to a large extent.


Subject(s)
Cell Physiological Phenomena , Metabolomics , Animals , Mice , Metabolomics/methods
7.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200005

ABSTRACT

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Subject(s)
Autophagy , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Dinoprostone , Genes, Mitochondrial , Glutathione
8.
iScience ; 26(10): 107719, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37674984

ABSTRACT

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

9.
Sci Immunol ; 8(86): eadg3517, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37566679

ABSTRACT

The skin needs to balance tolerance of colonizing microflora with rapid detection of potential pathogens. Flexible response mechanisms would seem most suitable to accommodate the dynamic challenges of effective antimicrobial defense and restoration of tissue homeostasis. Here, we dissected macrophage-intrinsic mechanisms and microenvironmental cues that tune macrophage signaling in localized skin infection with the colonizing and opportunistic pathogen Staphylococcus aureus. Early in skin infection, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by γδ T cells and hypoxic conditions within the dermal microenvironment diverted macrophages away from a homeostatic M-CSF- and hypoxia-inducible factor 1α (HIF-1α)-dependent program. This allowed macrophages to be metabolically rewired for maximal inflammatory activity, which requires expression of Irg1 and generation of itaconate, but not HIF-1α. This multifactorial macrophage rewiring program was required for both the timely clearance of bacteria and for the provision of local immune memory. These findings indicate that immunometabolic conditioning allows dermal macrophages to cycle between antimicrobial activity and protection against secondary infections.


Subject(s)
Macrophages , Staphylococcal Skin Infections , Humans , Cytokines/metabolism , Signal Transduction , Staphylococcal Skin Infections/metabolism
10.
Front Mol Biosci ; 10: 1168941, 2023.
Article in English | MEDLINE | ID: mdl-36968280
11.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993703

ABSTRACT

Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.

12.
Nat Commun ; 14(1): 721, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781848

ABSTRACT

Epithelial tissues provide front-line barriers shielding the organism from invading pathogens and harmful substances. In the airway epithelium, the combined action of multiciliated and secretory cells sustains the mucociliary escalator required for clearance of microbes and particles from the airways. Defects in components of mucociliary clearance or barrier integrity are associated with recurring infections and chronic inflammation. The timely and balanced differentiation of basal cells into mature epithelial cell subsets is therefore tightly controlled. While different growth factors regulating progenitor cell proliferation have been described, little is known about the role of metabolism in these regenerative processes. Here we show that basal cell differentiation correlates with a shift in cellular metabolism from glycolysis to fatty acid oxidation (FAO). We demonstrate both in vitro and in vivo that pharmacological and genetic impairment of FAO blocks the development of fully differentiated airway epithelial cells, compromising the repair of airway epithelia. Mechanistically, FAO links to the hexosamine biosynthesis pathway to support protein glycosylation in airway epithelial cells. Our findings unveil the metabolic network underpinning the differentiation of airway epithelia and identify novel targets for intervention to promote lung repair.


Subject(s)
Epithelial Cells , Respiratory System , Epithelium/metabolism , Epithelial Cells/metabolism , Cell Differentiation/physiology , Fatty Acids/metabolism , Respiratory Mucosa/metabolism
13.
Anal Chem ; 95(9): 4325-4334, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36812587

ABSTRACT

Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105-107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Animals , Chromatography, Liquid/methods , Metabolomics/methods , Metabolome , Cell Physiological Phenomena
14.
Nat Immunol ; 24(3): 516-530, 2023 03.
Article in English | MEDLINE | ID: mdl-36732424

ABSTRACT

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositols/metabolism , Signal Transduction , Type C Phospholipases/metabolism , CD8-Positive T-Lymphocytes/metabolism
15.
Methods Mol Biol ; 2554: 155-178, 2023.
Article in English | MEDLINE | ID: mdl-36178626

ABSTRACT

Metabolomics is a continuously dynamic field of research that is driven by demanding research questions and technological advances alike. In this review we highlight selected recent and ongoing developments in the area of mass spectrometry-based metabolomics. The field of view that can be seen through the metabolomics lens can be broadened by adoption of separation techniques such as hydrophilic interaction chromatography and ion mobility mass spectrometry (going broader). For a given biospecimen, deeper metabolomic analysis can be achieved by resolving smaller entities such as rare cell populations or even single cells using nano-LC and spatially resolved metabolomics or by extracting more useful information through improved metabolite identification in untargeted metabolomic experiments (going deeper). Integration of metabolomics with other (omics) data allows researchers to further advance in the understanding of the complex metabolic and regulatory networks in cells and model organisms (going further). Taken together, diverse fields of research from mechanistic studies to clinics to biotechnology applications profit from these technological developments.


Subject(s)
Ion Mobility Spectrometry , Metabolomics , Chromatography, Liquid/methods , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Metabolomics/methods , Research Design
16.
Nat Metab ; 4(11): 1591-1610, 2022 11.
Article in English | MEDLINE | ID: mdl-36400935

ABSTRACT

Obesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities. We find that obesity deregulates gene expression networks, including lipid handling, metabolic pathways and AP1 transcription factor and inflammatory signaling, in an organ- and EC-subtype-specific manner. The transcriptomic aberrations worsen with sustained obesity and are only partially mitigated by dietary intervention and weight loss. For example, dietary intervention substantially attenuates dysregulation of liver, but not kidney, EC transcriptomes. Through integration with human genome-wide association study data, we further identify a subset of vascular disease risk genes that are induced by obesity. Our work catalogs the impact of obesity on the endothelium, constitutes a useful resource and reveals leads for investigation as potential therapeutic targets.


Subject(s)
Atherosclerosis , Endothelial Cells , Male , Animals , Mice , Humans , Endothelial Cells/metabolism , Genome-Wide Association Study , Obesity/metabolism , Weight Loss , Atherosclerosis/genetics , Atherosclerosis/metabolism
17.
Nature ; 610(7932): 555-561, 2022 10.
Article in English | MEDLINE | ID: mdl-36171294

ABSTRACT

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Th17 Cells , Glutamine/metabolism , Interleukin-17/metabolism , Mitochondria/metabolism , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Serine/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , AMP-Activated Protein Kinases/metabolism , Citric Acid Cycle , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
18.
Blood ; 140(10): 1167-1181, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35853161

ABSTRACT

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Suppressor Protein p53 , Animals , Apoptosis , Humans , Leukemia, Myeloid, Acute/genetics , Major Histocompatibility Complex , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Transplantation, Homologous , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
19.
Nat Metab ; 4(7): 856-866, 2022 07.
Article in English | MEDLINE | ID: mdl-35864246

ABSTRACT

Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.


Subject(s)
Lysosomes , Succinates , Autophagy/physiology , Lysosomes/metabolism , Macrophages/metabolism , Succinates/metabolism , Succinates/pharmacology
20.
STAR Protoc ; 3(2): 101408, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35620073

ABSTRACT

Metabolism is important for the regulation of hematopoietic stem cells (HSCs) and drives cellular fate. Due to the scarcity of HSCs, it has been technically challenging to perform metabolome analyses gaining insight into HSC metabolic regulatory networks. Here, we present two targeted liquid chromatography-mass spectrometry approaches that enable the detection of metabolites after fluorescence-activated cell sorting when sample amounts are limited. One protocol covers signaling lipids and retinoids, while the second detects tricarboxylic acid cycle metabolites and amino acids. For complete details on the use and execution of this protocol, please refer to Schönberger et al. (2022).


Subject(s)
Lipidomics , Tandem Mass Spectrometry , Chromatography, Liquid , Hematopoietic Stem Cells , Metabolomics/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL