Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 14(11): e8623, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397005

ABSTRACT

In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Escherichia coli/metabolism , Glucose/metabolism , Cell Division , Escherichia coli/cytology , Metabolomics/methods , Microfluidic Analytical Techniques , Proteolysis , Single-Cell Analysis
2.
Sci Rep ; 8(1): 11760, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082753

ABSTRACT

Making the right choice for nutrient consumption in an ever-changing environment is a key factor for evolutionary success of bacteria. Here we investigate the regulatory mechanisms that enable dynamic adaptation between non-preferred and preferred carbon sources for the model Gram-negative and -positive species Escherichia coli and Bacillus subtilis, respectively. We focus on the ability for instantaneous catabolism of a gluconeogenic carbon source upon growth on a glycolytic carbon source and vice versa. By following isotopic tracer dynamics on a 1-2 minute scale, we show that flux reversal from the preferred glucose to non-preferred pyruvate as the sole carbon source is primarily transcriptionally regulated. In the opposite direction, however, E. coli can reverse its flux instantaneously by means of allosteric regulation, whereas in B. subtilis this flux reversal is transcriptionally regulated. Upon removal of transcriptional regulation, B. subtilis assumes the ability of instantaneous glucose catabolism. Using an approach that combines quantitative metabolomics and kinetic modelling, we then identify the additionally necessary key metabolite-enzyme interactions that implement the instantaneous flux reversal in the transcriptionally deregulated B. subtilis, and validate the most relevant allosteric interactions.


Subject(s)
Bacillus subtilis/metabolism , Carbon/metabolism , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glucose/metabolism , Kinetics , Pyruvic Acid/metabolism
3.
PLoS Biol ; 13(3): e1002109, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25763575

ABSTRACT

Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.


Subject(s)
Gene Expression Regulation, Bacterial , Models, Statistical , Polysaccharides, Bacterial/biosynthesis , Polysaccharides/biosynthesis , Pseudomonas fluorescens/genetics , Pyrimidines/biosynthesis , Bacterial Capsules/metabolism , Biological Evolution , Genotype , Metabolic Networks and Pathways/genetics , Phenotype , Pseudomonas fluorescens/metabolism , Pseudomonas fluorescens/ultrastructure
4.
J Appl Phycol ; 24(4): 693-699, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22993457

ABSTRACT

High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed under the worst-case scenario found during winter time in Huelva, south of Spain. The maximum light intensity (800 µmol photons m(-2) s(-1)) and temperature (20°C) during winter were simulated in a lab-scale photobioreactor with a short light-path of 14 mm. Chemostat conditions were applied and the results were compared with a temperature-controlled situation at 38°C (optimal growth temperature for C. sorokiniana). When temperature was optimal the highest productivity was found at a dilution rate of 0.18 h(-1) (P(v) = 0.28 g Kg(-1) h(-1)), and the biomass yield on light energy was high (Y(x,E) = 1.2 g mol(-1) photons supplied). However, at suboptimal temperature, the specific growth rate of C. sorokiniana was surprisingly low, not being able to support continuous operation at a dilution rate higher than 0.02 h(-1). The slow metabolism under suboptimal temperature resulted in a decline of the light energy requirements of the cells. Consequently, the maximum winter irradiance was experienced as excessive, leading to a low photosynthetic efficiency and productivity (Y(x,E) = 0.5 g mol(-1) photons supplied, P(v) = 0.1 g Kg(-1) h(-1)). At suboptimal temperature a higher carotenoid-to-chlorophyll ratio was observed indicating the activation of light-dissipating processes. We conclude that temperature control and/or light dilution during winter time will enhance the productivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...