Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
AAPS J ; 25(1): 14, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627496

ABSTRACT

Between October 2020 and March 2022, FDA's Center for Drug Evaluation and Research (CDER) completed two pilot programs to assess the quality management maturity (QMM) of drug manufacturing establishments. Mature quality systems promote proactive detection of vulnerabilities, prevent problems before they occur, and foster a culture that rewards process and system improvements. A CDER QMM program may help to advance supply chain resiliency and robustness and mitigate drug shortages. One pilot program evaluated seven establishments located within the U.S. that produce finished dosage form products marketed in the U.S. A second pilot program evaluated eight establishments located outside the U.S. that produce active pharmaceutical ingredients used in drug products marketed in the U.S. The execution of these pilot programs afforded FDA the opportunity to learn important lessons about the establishment QMM assessment process, scoring approach, assessor behaviors, and perceptions of the assessment questions, reports, and ratings. Many of the participating establishments reported that the QMM pilot assessments helped to identify their strengths, weaknesses, and new areas for improvement which they had not previously identified through internal audits or CGMP inspections. There has been a great deal of interest in the outcomes of CDER's QMM pilot programs and this paper describes, for the first time, the lessons CDER learned and will continue to heed in the development of a QMM program.


Subject(s)
United States Food and Drug Administration , United States , Drug Evaluation
2.
JAMA Netw Open ; 3(8): e2013920, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32833019

ABSTRACT

Importance: Health care practitioners and patients must have information to support their confidence in the quality of prescription pharmaceuticals. Objective: To determine whether there were clear and substantive differences in major quality attributes between difficult-to-make solid oral dosage form pharmaceutical products marketed in the US. Design, Setting, and Participants: This quality improvement study analyzed US Food and Drug Administration-collected samples of 252 drug products marketed in the US and manufactured in the US, Canada, Europe, India, and the rest of Asia. These drug products were immediate-release solid oral dosage forms considered difficult to make on the basis of product quality history. This sampling included 35 innovator and 217 generic drug samples manufactured by 46 different firms containing 17 different active ingredients. Statistical analysis was performed from February to November 2019. Main Outcomes and Measures: All products were tested within their shelf life on the basis of the legally recognized tests of the US Pharmacopeia for the major quality attributes of dosage unit uniformity and dissolution. These tests measure dosage consistency and drug release, respectively. The consistency of either attribute was used to calculate a process performance index to describe the variability in manufacturing. Results: All 252 drug product samples met the US market standards for dosage unit uniformity and dissolution, although the process performance index (Ppk) for dissolution fell below the level of 4-sigma capability (ie, <1 error per 1600) for 11 different manufacturers and for generics in 4 of 5 regions, including the US. As part of a retrospective analysis, manufacturers performing above the median Ppk for either dissolution or dosage unit uniformity submitted fewer product quality defect reports (mean field alert reports of 0.22 and 0.63, respectively) than those falling at or below the median Ppk for these attributes (mean field alert reports of 2.1 and 1.7, respectively). Conclusions and Relevance: All samples met the US market standards for dosage unit uniformity and dissolution, indicating acceptability for use by patients regardless of manufacturer or region. To our knowledge, this is the largest sampling study of pharmaceutical manufacturers for the US market and these data provide objective insight into the quality of prescription drugs with high manufacturing risks.


Subject(s)
Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/standards , Capsules/analysis , Capsules/standards , Drugs, Generic/analysis , Drugs, Generic/standards , Quality Control , Quality Improvement , Tablets/analysis , Tablets/standards , United States
3.
J Pharm Sci ; 107(12): 2995-3002, 2018 12.
Article in English | MEDLINE | ID: mdl-30148985

ABSTRACT

Dissolution testing is an important physiochemical test for the development of solid oral dosage forms, tablets, and capsules. As a quality control test, the dissolution test is used for assessment of drug product quality and is specified for batch release and regulatory stability studies. In vitro dissolution test results can often be correlated with the biopharmaceutical behavior of a product.This article provides a summary of views from major global agencies (Europe, Japan, United States), pharmacopoeias, academia, and industry. Based on available guidance and literature, this article summarizes highlights for development and validation of a suitable dissolution method, setting appropriate specifications, in vitro-in vivo comparison, and how to obtain a biowaiver.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Excipients/chemistry , Pharmaceutical Preparations/chemistry , Capsules/chemistry , Chemistry, Pharmaceutical/instrumentation , Delayed-Action Preparations/chemistry , Drug Compounding/instrumentation , Humans , Quality Control , Solubility , Tablets/chemistry
4.
Int J Pharm ; 515(1-2): 390-402, 2016 Dec 30.
Article in English | MEDLINE | ID: mdl-27773853

ABSTRACT

Failures surrounding pharmaceutical quality, particularly with respect to product manufacturing issues and facility remediation, account for the majority of drug shortages and product recalls in the United States. Major scientific advancements pressure established regulatory paradigms, especially in the areas of biosimilars, precision medicine, combination products, emerging manufacturing technologies, and the use of real-world data. Pharmaceutical manufacturing is increasingly globalized, prompting the need for more efficient surveillance systems for monitoring product quality. Furthermore, increasing scrutiny and accelerated approval pathways provide a driving force to be even more efficient with limited regulatory resources. To address these regulatory challenges, the Office of Pharmaceutical Quality (OPQ) in the Center for Drug Evaluation and Research (CDER) at the U.S. Food and Drug Administration (FDA) harbors a rigorous science and research program in core areas that support drug quality review, inspection, surveillance, standards, and policy development. Science and research is the foundation of risk-based quality assessment of new drugs, generic drugs, over-the-counter drugs, and biotechnology products including biosimilars. This is an overview of the science and research activities in OPQ that support the mission of ensuring that safe, effective, and high-quality drugs are available to the American public.


Subject(s)
Pharmaceutical Preparations/standards , Research/standards , Humans , United States , United States Food and Drug Administration
6.
Analyst ; 140(21): 7225-33, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26401527

ABSTRACT

A new spectral library-based approach that is capable of screening a diverse set of finished drug products using only an active pharmaceutical ingredient spectral library is described in this paper. This approach obviates the need for a comprehensive drug product library, thereby streamlining the use of spectral library-based tests for anti-counterfeiting efforts, specifically to target finished drug products containing the wrong active ingredient or no active ingredient at all. Both laboratory-based and portable spectrometers are used in the study to demonstrate the usefulness and transferability of the spectral correlation method for field screening. The spectral correlation between the active pharmaceutical ingredient and finished drug product spectra is calculated using both full spectral analysis and targeted spectral regions analysis of six types of antimalarial, antibiotic and antiviral products. The spectral regions were determined using a moving window spectral correlation algorithm, and the use of specific spectral regions is shown to be crucial in screening finished drug products using only the active pharmaceutical ingredient spectrum. This comprehensive screening spectral correlation method is tested on seven different validation samples from different manufacturers as those used to develop the method, as well as simulated counterfeits which were prepared to mimic falsified drugs containing no active ingredient. The spectral correlation method is successful in correctly identifying 100% of the authentic products and simulated counterfeit samples tested.


Subject(s)
Anti-Infective Agents/analysis , Counterfeit Drugs/analysis , Spectrum Analysis, Raman/methods , Algorithms , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antimalarials/analysis , Antimalarials/chemistry , Antiviral Agents/analysis , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , Counterfeit Drugs/chemistry , Signal Processing, Computer-Assisted , Technology, Pharmaceutical/methods
7.
Anal Biochem ; 490: 52-4, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26278168

ABSTRACT

N-sulfonated oversulfated chondroitin sulfate (NS-OSCS), recently reported as a potential threat to the heparin supply, was prepared along with its intermediate derivatives. All compounds were spiked into marketplace heparin and subjected to United States Pharmacopeia (USP) identification assays for heparin (proton nuclear magnetic resonance [(1)H NMR], chromatographic identity, % galactosamine [%GalN], anti-factor IIa potency, and anti-factor Xa/IIa ratio). The U.S. Food and Drug Administration (FDA) strong-anionic exchange high-performance liquid chromatography (SAX-HPLC) method resolved NS-OSCS from heparin and OSCS and had a limit of detection of 0.26% (w/w) NS-OSCS. The %GalN test was sensitive to the presence of NS-OSCS in heparin. Therefore, current USP heparin monograph tests (i.e., SAX-HPLC and %GalN) detect the presence of NS-OSCS in heparin.


Subject(s)
Anticoagulants/chemistry , Chondroitin Sulfates/analysis , Drug Contamination , Heparin/chemistry , Indicators and Reagents/analysis , Anion Exchange Resins , Anticoagulants/pharmacology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/toxicity , Chromatography, High Pressure Liquid , Dimethylformamide/chemistry , Drug Contamination/prevention & control , Galactosamine/analysis , Heparin/pharmacology , Hydrazines/chemistry , Indicators and Reagents/chemistry , Indicators and Reagents/toxicity , Limit of Detection , Proton Magnetic Resonance Spectroscopy , Quality Control , United States , United States Food and Drug Administration
8.
AAPS J ; 17(4): 1011-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25840884

ABSTRACT

On September 16 and 17, 2014, the Food and Drug Administration (FDA) and Product Quality Research Institute (PQRI) inaugurated their Conference on Evolving Product Quality. The Conference is conceived as an annual forum in which scientists from regulatory agencies, industry, and academia may exchange viewpoints and work together to advance pharmaceutical quality. This Conference Summary Report highlights key topics of this conference, including (1) risk-based approaches to pharmaceutical development, manufacturing, regulatory assessment, and post-approval changes; (2) FDA-proposed quality metrics for products, facilities, and quality management systems; (3) performance-based quality assessment and clinically relevant specifications; (4) recent developments and implementation of continuous manufacturing processes, question-based review, and European Medicines Agency (EMA)-FDA pilot for Quality-by-Design (QbD) applications; and (5) breakthrough therapies, biosimilars, and international harmonization, focusing on ICH M7 and Q3D guidelines. The second FDA/PQRI conference on advancing product quality is planned for October 5-7, 2015.


Subject(s)
Drug Design , Pharmaceutical Preparations/standards , Drug Approval , Humans , Quality Control , United States , United States Food and Drug Administration
10.
AAPS J ; 17(2): 405-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25501675

ABSTRACT

Gaucher disease, the most common lysosomal metabolic disorder, can be treated with enzyme replacement therapy (ERT). Recombinant human glucocerebrosidase imiglucerase (Cerezyme(®)), produced in Chinese hamster ovary cells, has been used for ERT of Gaucher disease for 20 years. Another recombinant glucocerebrosidase velaglucerase alfa (VPRIV), expressed in a human fibroblast cell line, was approved by the US Food and Drug Administration in 2010. The amino acid sequence difference at residue 495 of these two products is well documented. The overall N-linked qualitative glycan composition of these two products has also been reported previously. Herein, employing our recently developed approach utilizing isobaric tandem mass tag (TMT) labeling and an LTQ Orbitrap XL electron transfer dissociation (ETD) hybrid mass spectrometer, the site-specific glycoforms of these products were identified with ETD and collision-induced dissociation (CID) spectra. The quantitative comparison of site-specific glycans was achieved utilizing higher-energy collisional dissociation (HCD) spectra with a NanoMate used as both a fraction collector and a sample introduction device. From the trypsin-digested mixture of these two products, over 90 glycopeptides were identified by accurate mass matching. In addition to those previously reported, additional glycopeptides were detected with moderate abundance. The relative amount of each glycoform at a specific glycosylation site was determined based on reporter signal intensities of the TMT labeling reagents. This is the first report of site-specific simultaneous qualitative and quantitative comparison of glycoforms for Cerezyme(®) and VPRIV. The results demonstrate that this method could be utilized for biosimilarity determination and counterfeit identification of glycoproteins.


Subject(s)
Chromatography, Liquid/methods , Glucosylceramidase/chemistry , Mass Spectrometry/methods , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Enzyme Replacement Therapy/methods , Glycoproteins/chemistry , Glycosylation , Humans , Recombinant Proteins/chemistry
11.
Pharm Res ; 31(7): 1867-76, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24643933

ABSTRACT

Biorelevant in vitro performance testing of orally administered dosage forms has become an important tool for the assessment of drug product in vivo behavior. An in vitro performance test which mimics the intraluminal performance of an oral dosage form is termed biorelevant. Biorelevant tests have been utilized to decrease the number of in vivo studies required during the drug development process and to mitigate the risk related to in vivo bioequivalence studies. This report reviews the ability of current in vitro performance tests to predict in vivo performance and generate successful in vitro and in vivo correlations for oral dosage forms. It also summarizes efforts to improve the predictability of biorelevant tests. The report is based on the presentations at the 2013 workshop, Biorelevant In Vitro Performance Testing of Orally Administered Dosage Forms, in Washington, DC, sponsored by the FIP Dissolution/Drug Release Focus Group in partnership with the American Association of Pharmaceutical Scientists (AAPS) and a symposium at the AAPS 2012 Annual meeting on the same topic.


Subject(s)
Chemistry, Pharmaceutical/education , Chemistry, Pharmaceutical/methods , Drug Evaluation, Preclinical/methods , Pharmaceutical Preparations/administration & dosage , Administration, Oral , Chemistry, Pharmaceutical/standards , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/metabolism , Dosage Forms , Drug Evaluation, Preclinical/standards , Humans , Pharmacokinetics , Quality Control , Solubility
12.
J Pharm Biomed Anal ; 85: 99-107, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23917037

ABSTRACT

During the 2007-2008 heparin crisis it was found that the United States Pharmacopeia (USP) testing monograph for heparin sodium or low molecular weight heparins did not detect the presence of the contaminant, oversulfated chondroitin sulfate (OSCS). In response to this concern, new tests and specifications were developed by the Food and Drug Administration (FDA) and USP and put in place to detect not only the contaminant OSCS, but also to improve assurance of quality and purity of these drug products. The USP monographs for the low molecular weight heparins (LMWHs) approved for use in the United States (dalteparin, tinzaparin and enoxaparin) are also undergoing revision to include many of the same tests used for heparin sodium, including; one-dimensional (1D) 500 MHz (1)H NMR, SAX-HPLC, percent galactosamine in total hexosamine and anticoagulation time assays with purified Factor IIa or Factor Xa. These tests represent orthogonal approaches for heparin identification, measurement of bioactivity and for detection of process impurities or contaminants in these drug products. Here we describe results from a survey of multiple lots from three types of LMWHs in the US market which were collected after the 2009 heparin sodium monograph revision. In addition, innovator and generic versions of formulated enoxaparin products purchased in 2011 are compared using these tests and found to be highly similar within the discriminating power of the assays applied.


Subject(s)
Drug Contamination , Heparin, Low-Molecular-Weight/analysis , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Enoxaparin/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/standards , Magnetic Resonance Spectroscopy
13.
Analyst ; 138(10): 3058-65, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23579346

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS) is an information rich analytical tool that can provide fast, robust and sensitive characterization of protein therapeutics for quality assurance and structural comparison. Herein, structural characterization of two anti-CD20 monoclonal antibodies obtained from two different sources was performed using a middle-down LC-MS strategy to determine if they can be analytically differentiated. Through the use of a specific enzymatic digestion method using IdeS with subsequent LC-MS analysis, we show that the anti-CD20 monoclonal antibody that has been approved by the FDA can be partially characterized and differentiated analytically from an Indian sourced product that lacks FDA approval. In comparison to the FDA-approved product, differential modifications to both the N- and C-termini result in increased charge heterogeneity for the Indian product. In addition, significant differences in the intensities of the observed glycoforms between the two antibodies were detected. While this study assesses only one lot of each of a FDA approved drug product and the Indian sourced drug product, the observed differences may represent process specific fingerprints that could be useful for surveillance purposes.


Subject(s)
Antibodies, Monoclonal, Humanized/analysis , Antibodies, Monoclonal/analysis , Antigens, CD20/chemistry , Antigen-Antibody Reactions , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , Trastuzumab
14.
Anal Chem ; 85(3): 1531-9, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23249142

ABSTRACT

The application of multiplexed isobaric tandem mass tag (TMT) labeling and an LTQ Orbitrap XL ETD (electron transfer dissociation) hybrid mass spectrometer as a direct approach for qualitative and quantitative characterization of glycoproteins is reported. Bovine fetuin was used as a model glycoprotein in this study. For online liquid chromatography-mass spectrometry (LC-MS) analysis, high-resolution, mass accurate full scan MS spectra were acquired in the Orbitrap mass analyzer followed by data-dependent tandem mass spectrometry (MS/MS) with alternating collision-induced dissociation (CID), ETD, and higher-energy collisional dissociation (HCD) scans. An additional in-source dissociation scan was used as a highly sensitive and selective detection method for eluting glycosylated peptides. By alternatively using three different dissociation methods, 23 glycoforms from all 5 corresponding glycopeptides were identified from a trypsin digest of bovine fetuin. With ETD, labile glycans were retained without any signs of carbohydrate cleavage with concurrent fragmentation of the peptide backbone. Glycosylation sites were clearly localized from the ETD fragmentation data. Glycan structure elucidation was accomplished using CID. The CID experiments generated fragment ions predominantly from cleavage of glycosidic bonds without breaking the peptide bond. Novel to this method, the TMT labeling protocol was modified and adapted for higher labeling efficiency, and a TriVersa NanoMate was used to reinfuse samples to improve ETD and HCD spectra of glycopeptides. Quantification with TMT was verified based on the HCD spectra from multiple nonglycopeptides and glycopeptides. This method can be used as a qualitative and quantitative technique for direct characterization of glycoproteins and has applicability for detection of counterfeit glycoprotein drug products.


Subject(s)
Glycoproteins/analysis , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Cattle , Chromatography, Liquid/methods , Electron Transport/physiology , Glycoproteins/metabolism , Molecular Sequence Data
15.
J Pharm Biomed Anal ; 71: 18-26, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22902504

ABSTRACT

Ion mobility spectrometry (IMS) served as a rapid, qualitative screening tool for the analysis of adulterated weight-loss products. We have previously shown that sibutramine extracted into methanol from dietary supplements can be detected at low levels (2ng) using a portable IMS spectrometer, and have adapted a similar method for the analysis of additional weight-loss product adulterants. An FDA collaborative study helped to define the limits for fluoxetine with a limit of detection of 2ng. We also evaluated more readily available, less toxic extraction solvents and found isopropanol and water were comparable to methanol. Isopropanol was favored over water for two reasons: (1) water increases the analysis time and (2) aqueous solutions were more susceptible to pH change, which affected the detection of sibutramine. In addition to sibutamine and fluoxetine, we surveyed 11 weight-loss adulterants; bumetanide, fenfluramine, furosemide, orlistat, phenolphthalein, phentermine, phenytoin, rimonabant, sertraline and two sibutramine analogs, desmethylsibutramine and didesmethylsibutramine, using portable and benchtop ion mobility spectrometers. Out of these 13 active pharmaceutical ingredients (APIs), portable and benchtop ion mobility spectrometers were capable of screening products for 10 of these APIs. The developed procedure was applied to two weight-loss dietary supplements using both portable and benchtop instruments. One product contained didesmethylsibutramine while the other contained didesmethylsibutramine and phenolphthalein.


Subject(s)
Anti-Obesity Agents/chemistry , Dietary Supplements/analysis , Medical Laboratory Science/instrumentation , Medical Laboratory Science/methods , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , 2-Propanol/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Methanol/chemistry , Solutions/chemistry , Solvents/chemistry , Water/chemistry , Weight Loss/drug effects
16.
Pharm Res ; 29(11): 3122-30, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22752252

ABSTRACT

PURPOSE: To determine if cascade impactor (CI) measurement of drug in small particles from aqueous nasal sprays, described in FDA's 2003 draft Nasal Bioavailability/Bioequivalence Guidance, can be optimized to reduce measurement variability. To examine the influence of flow rate configurations and number of impactor stages on CI deposition and explore the importance of inlet volume. METHODS: A total of eight assemblies and manual vs. automatic actuation were tested for deposition on the sum of all stages of the CI, and for Group 2 total drug mass per the Guidance. Mean deposition and variance about the mean were determined for each assembly. RESULTS: The path length for a spherical 1 l inlet was too short to allow adequate aerosol formation. Data variance was reduced by a factor of two or more by using an automatic actuator relative to manual actuation. Impactor assembly modification did not improve variance over the standard assembly. CONCLUSIONS: Use of a spherical inlet (≥ 2 l volume) and automatic actuation are recommended for comparative measurements of drug in small particles arising from aqueous nasal sprays. The standard (8-stage) 28.3 lpm CI flow rate configuration is recommended when using the Andersen Cascade Impactor (ACI), as no other assembly showed a distinct advantage.


Subject(s)
Aerosols/chemistry , Chemistry, Pharmaceutical/instrumentation , Equipment Design/instrumentation , Metered Dose Inhalers , Nasal Sprays , Pharmaceutical Solutions/chemistry , Administration, Inhalation , Aerosols/administration & dosage , Biological Availability , Particle Size , Pharmaceutical Solutions/administration & dosage , Respiratory System Agents/administration & dosage , Respiratory System Agents/chemistry
17.
J Pharm Biomed Anal ; 67-68: 42-50, 2012.
Article in English | MEDLINE | ID: mdl-22633605

ABSTRACT

Previously, the FDA validated a method to assess the structure and composition of heparin products by separating and quantifying disaccharide level digests by reverse-phase-ion-pairing liquid chromatography (RPIP-HPLC) coupled to a low resolution and low sensitivity ion trap mass-spectrometer. Here, improved separation, information content and sensitivity were obtained through the use of reverse phase ion-pairing ultra-high pressure liquid chromatography (RPIP-UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer. Thus, with the new method, improved structural characterization of the same 20 lots of heparin sodium active pharmaceutical ingredients (APIs) as were analyzed in the previous work were obtained. In addition, for the first time, 10 low molecular weight heparin (LMWH) lots were characterized representing multiple lots manufactured by three different processes (dalteparin, tinzaparin or enoxaparin). In this study, UHPLC separation conditions and the enzymatic digesting protocol were optimized for analysis of disaccharide level digests of heparin and positive and negative electrospray ionization (ESI) modes were tested. The negative ion mode ESI analysis was found to be superior to the positive ion mode for these measurements, and a combination of heparin lyase II and III were optimal for heparin digestion. The data obtained establishes the normal variation in the composition of heparin sodium or LMWHs in this assay. These values are useful as possible product benchmarks and for surveillance of the heparin products being imported into the US market.


Subject(s)
Chromatography, High Pressure Liquid/methods , Heparin/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Limit of Detection
18.
J Pharm Biomed Anal ; 61: 191-8, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22206890

ABSTRACT

In this study, pharmaceutical grade sorbitol was used as a model system for comparison of Raman based library spectral correlation methods with more sophisticated methods of chemometric data analysis. Both crystallizing sorbitol (CS) and non-crystallizing sorbitol (NCS) from several manufacturers were examined. The Raman spectrum of each sample was collected and identified by correlation with a spectral library that included the CS spectrum but not the NCS spectrum. The average hit quality index (HQI) for the measured NCS spectra and the library CS spectrum was 0.966 whereas the average HQI for the measured CS spectra was 0.991. Both HQIs exceeded the 0.950 threshold that is commonly used for material verification. To enhance the discrimination between CS and NCS, a CS/NCS classification model was constructed using soft independent modeling of class analogies (SIMCA). SIMCA was able to positively identify CS and NCS solutions with no misclassifications. When CS was adulterated with low levels (0-5%) of ethylene glycol (EG) and diethylene glycol (DEG), the HQI values of the measured spectra and the CS library spectrum were still above 0.950. When the CS SIMCA model was applied to adulterated CS spectra, it determined that CS samples with adulterant levels as low as 2% were outside of the CS class. A quantitative PLS model was also applied to EG adulterated CS and resulted in a detection limit of 0.9% for EG. The results obtained from these studies highlight the importance of selecting an appropriate data analysis process for the detection of low level adulterants in pharmaceutical raw materials using Raman spectroscopic screening methods.


Subject(s)
Drug Contamination , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/classification , Small Molecule Libraries/analysis , Spectrum Analysis, Raman/methods , Chemistry, Pharmaceutical/methods , Crystallization , Sorbitol/analysis , Sorbitol/classification
19.
Anal Bioanal Chem ; 401(8): 2445-54, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21901459

ABSTRACT

We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment. For UFH, a mean ± standard deviation value for M(w) of 16,773 ± 797 was observed with a range of 15,620 to 18,363 (n = 20, run in triplicate). For LMWHs by SEC-MALLS, we measured mean M(w) values for dalteparin, tinzaparin, and enoxaparin of 6,717 ± 71 (n = 4), 6,670 ± 417 (n = 3), and 3,959 ± 145 (n = 3), respectively. PAGE analysis of the same UFH, dalteparin, tinzaparin, and enoxaparin samples showed values of 16,135 ± 643 (n = 20), 5,845 ± 45 (n = 4), 6,049 ± 95 (n = 3), and 4,772 ± 69 (n = 3), respectively. These orthogonal measurements are the first M(w) results obtained with a large heparin sample set on product being marketed after the heparin crisis of 2008 changed the level of scrutiny of this drug class. In this study, we compare our new data set to samples analyzed over 10 years earlier. In addition, we found that the PAGE analysis of heparinase digested UFH and neat LMWH samples yield characteristic patterns that provide a facile approach for identification and assessment of drug quality and uniformity.


Subject(s)
Anticoagulants/chemistry , Chromatography, Gel/methods , Electrophoresis, Polyacrylamide Gel/methods , Heparin Lyase/metabolism , Heparin, Low-Molecular-Weight/chemistry , Heparin/chemistry , Anticoagulants/metabolism , Heparin/metabolism , Heparin, Low-Molecular-Weight/metabolism , Light , Molecular Weight , Refractometry , Scattering, Radiation
20.
Analyst ; 136(20): 4232-40, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21874199

ABSTRACT

In this paper we evaluate methods for standardization of Raman spectra that are required to improve spectral correlation computations between spectra measured on different instruments. Five commercially-available 785 nm Raman spectrometers from different vendors were included in the study. These spectrometers have diverse specifications and performance levels and range in size from laboratory-based instruments to field-deployable portable and handheld platforms. Since each Raman spectrometer has different characteristics, spectra obtained on one instrument cannot readily be compared to a library acquired on a different instrument without performing various types of spectral corrections (standardization). We outline a procedure that combines previously established Raman shift and intensity correction protocols with a resolution matching step to facilitate the comparison of a centralized master library with spectra acquired on different geographically distributed Raman spectrometers. The standardization procedure is effective in reducing the inherent instrument-to-instrument variability so that spectra from different spectrometers can be compared and reliable results obtained using library-based spectral correlation methods. The findings have important implications for the ability to transfer Raman spectral libraries between instruments.


Subject(s)
Pharmaceutical Preparations/analysis , Spectrum Analysis, Raman/methods , Acetaminophen/analysis , Acetaminophen/standards , Pharmaceutical Preparations/standards , Software , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...