Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Virol J ; 21(1): 153, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972989

ABSTRACT

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.


Subject(s)
Astroviridae Infections , Birds , Feces , Genetic Variation , Genome, Viral , Phylogeny , Animals , Hong Kong , Birds/virology , Feces/virology , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Animals, Wild/virology , Bird Diseases/virology , High-Throughput Nucleotide Sequencing , Avastrovirus/genetics , Avastrovirus/classification , Avastrovirus/isolation & purification , RNA, Viral/genetics , Open Reading Frames , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/classification
2.
JAMA ; 329(6): 472-481, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36786791

ABSTRACT

Importance: Early onset of myopia is associated with high myopia later in life, and myopia is irreversible once developed. Objective: To evaluate the efficacy of low-concentration atropine eyedrops at 0.05% and 0.01% concentration for delaying the onset of myopia. Design, Setting, and Participants: This randomized, placebo-controlled, double-masked trial conducted at the Chinese University of Hong Kong Eye Centre enrolled 474 nonmyopic children aged 4 through 9 years with cycloplegic spherical equivalent between +1.00 D to 0.00 D and astigmatism less than -1.00 D. The first recruited participant started treatment on July 11, 2017, and the last participant was enrolled on June 4, 2020; the date of the final follow-up session was June 4, 2022. Interventions: Participants were assigned at random to the 0.05% atropine (n = 160), 0.01% atropine (n = 159), and placebo (n = 155) groups and had eyedrops applied once nightly in both eyes over 2 years. Main Outcomes and Measures: The primary outcomes were the 2-year cumulative incidence rate of myopia (cycloplegic spherical equivalent of at least -0.50 D in either eye) and the percentage of participants with fast myopic shift (spherical equivalent myopic shift of at least 1.00 D). Results: Of the 474 randomized patients (mean age, 6.8 years; 50% female), 353 (74.5%) completed the trial. The 2-year cumulative incidence of myopia in the 0.05% atropine, 0.01% atropine, and placebo groups were 28.4% (33/116), 45.9% (56/122), and 53.0% (61/115), respectively, and the percentages of participants with fast myopic shift at 2 years were 25.0%, 45.1%, and 53.9%. Compared with the placebo group, the 0.05% atropine group had significantly lower 2-year cumulative myopia incidence (difference, 24.6% [95% CI, 12.0%-36.4%]) and percentage of patients with fast myopic shift (difference, 28.9% [95% CI, 16.5%-40.5%]). Compared with the 0.01% atropine group, the 0.05% atropine group had significantly lower 2-year cumulative myopia incidence (difference, 17.5% [95% CI, 5.2%-29.2%]) and percentage of patients with fast myopic shift (difference, 20.1% [95% CI, 8.0%-31.6%]). The 0.01% atropine and placebo groups were not significantly different in 2-year cumulative myopia incidence or percentage of patients with fast myopic shift. Photophobia was the most common adverse event and was reported by 12.9% of participants in the 0.05% atropine group, 18.9% in the 0.01% atropine group, and 12.2% in the placebo group in the second year. Conclusions and Relevance: Among children aged 4 to 9 years without myopia, nightly use of 0.05% atropine eyedrops compared with placebo resulted in a significantly lower incidence of myopia and lower percentage of participants with fast myopic shift at 2 years. There was no significant difference between 0.01% atropine and placebo. Further research is needed to replicate the findings, to understand whether this represents a delay or prevention of myopia, and to assess longer-term safety. Trial Registration: Chinese Clinical Trial Registry: ChiCTR-IPR-15006883.


Subject(s)
Atropine , Myopia , Child , Female , Humans , Male , Atropine/administration & dosage , Atropine/adverse effects , Atropine/therapeutic use , Disease Progression , Incidence , Mydriatics/adverse effects , Myopia/diagnosis , Myopia/prevention & control , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/adverse effects , Ophthalmic Solutions/therapeutic use , Refraction, Ocular , Age of Onset , Double-Blind Method , Child, Preschool
3.
Br J Ophthalmol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38164527

ABSTRACT

AIMS: To compare and rank the myopia control effects of different light wavelengths in children using a systematic review and Bayesian network meta-analysis (Bayesian NMA). METHODS: The review protocol was registered with PROSPERO. We searched PubMed, EMBASE and MEDLINE for relevant clinical and animal studies published as of 2 February 2023. We included studies comparing red, violet or full-spectrum light with controls. Data extracted included descriptive statistics and study outcomes (axial length (AL) elongation and progression of spherical equivalent (SE) refraction). After quality assessment, estimates of treatment effect outcomes (mean differences (MDs) and 95% CIs) were first pooled for the animal and clinical studies in a traditional meta-analysis. To compare and rank the different light wavelengths, the Bayesian NMA was then conducted for all the included clinical studies (12 studies) and separately for only randomised controlled trials (8 studies). MDs, 95% credible intervals (CrIs) and ranks of the various light wavelengths were estimated in the Bayesian NMA. RESULTS: When all clinical studies were included in the Bayesian NMA (12 studies), only red-light significantly slowed AL elongation, MD (95% CrI), -0.38 mm (-0.59 mm to -0.16 mm)/year and SE refraction progression, 0.72D (0.35D to 1.10D)/year compared with controls. It remained the only significant intervention when effect sizes from only RCTs (eight studies) were separately combined, (-0.28 mm (-0.40 mm to -0.15 mm)/year and 0.57D (0.22D to 0.92D)/year, for AL and SE refraction, respectively). CONCLUSION: Myopia control efficacy varied among different wavelengths of light, with red light ranked as the most effective. PROSPERO REGISTRATION NUMBER: Clinical studies: CRD42022368998; animal studies: CRD42022368671.

4.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Article in English | MEDLINE | ID: mdl-34545790

ABSTRACT

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Risk Assessment
5.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33395484

ABSTRACT

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Subject(s)
COVID-19/virology , Influenza A virus/physiology , Lung/virology , Nasal Cavity/virology , SARS-CoV-2/physiology , Trachea/virology , Viral Tropism/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Dogs , Humans , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Nasal Cavity/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Trachea/metabolism
6.
Lancet Respir Med ; 8(7): 687-695, 2020 07.
Article in English | MEDLINE | ID: mdl-32386571

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019, causing a respiratory disease (coronavirus disease 2019, COVID-19) of varying severity in Wuhan, China, and subsequently leading to a pandemic. The transmissibility and pathogenesis of SARS-CoV-2 remain poorly understood. We evaluate its tissue and cellular tropism in human respiratory tract, conjunctiva, and innate immune responses in comparison with other coronavirus and influenza virus to provide insights into COVID-19 pathogenesis. METHODS: We isolated SARS-CoV-2 from a patient with confirmed COVID-19, and compared virus tropism and replication competence with SARS-CoV, Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and 2009 pandemic influenza H1N1 (H1N1pdm) in ex-vivo cultures of human bronchus (n=5) and lung (n=4). We assessed extrapulmonary infection using ex-vivo cultures of human conjunctiva (n=3) and in-vitro cultures of human colorectal adenocarcinoma cell lines. Innate immune responses and angiotensin-converting enzyme 2 expression were investigated in human alveolar epithelial cells and macrophages. In-vitro studies included the highly pathogenic avian influenza H5N1 virus (H5N1) and mock-infected cells as controls. FINDINGS: SARS-CoV-2 infected ciliated, mucus-secreting, and club cells of bronchial epithelium, type 1 pneumocytes in the lung, and the conjunctival mucosa. In the bronchus, SARS-CoV-2 replication competence was similar to MERS-CoV, and higher than SARS-CoV, but lower than H1N1pdm. In the lung, SARS-CoV-2 replication was similar to SARS-CoV and H1N1pdm, but was lower than MERS-CoV. In conjunctiva, SARS-CoV-2 replication was greater than SARS-CoV. SARS-CoV-2 was a less potent inducer of proinflammatory cytokines than H5N1, H1N1pdm, or MERS-CoV. INTERPRETATION: The conjunctival epithelium and conducting airways appear to be potential portals of infection for SARS-CoV-2. Both SARS-CoV and SARS-CoV-2 replicated similarly in the alveolar epithelium; SARS-CoV-2 replicated more extensively in the bronchus than SARS-CoV. These findings provide important insights into the transmissibility and pathogenesis of SARS-CoV-2 infection and differences with other respiratory pathogens. FUNDING: US National Institute of Allergy and Infectious Diseases, University Grants Committee of Hong Kong Special Administrative Region, China; Health and Medical Research Fund, Food and Health Bureau, Government of Hong Kong Special Administrative Region, China.


Subject(s)
Betacoronavirus/immunology , Conjunctiva/virology , Coronavirus Infections/immunology , Immunity, Innate/immunology , Pneumonia, Viral/immunology , Respiratory System/virology , Viral Tropism/physiology , Virus Replication/physiology , Adult , Aged , Aged, 80 and over , Betacoronavirus/physiology , COVID-19 , Conjunctiva/immunology , Conjunctiva/physiopathology , Coronavirus Infections/physiopathology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Respiratory Mucosa/immunology , Respiratory Mucosa/physiopathology , Respiratory Mucosa/virology , Respiratory System/immunology , Respiratory System/physiopathology , SARS-CoV-2
7.
Eur Respir J ; 54(2)2019 08.
Article in English | MEDLINE | ID: mdl-31097520

ABSTRACT

Despite causing regular seasonal epidemics with substantial morbidity, mortality and socioeconomic burden, there is still a lack of research into influenza B viruses (IBVs). In this study, we provide for the first time a systematic investigation on the tropism, replication kinetics and pathogenesis of IBVs in the human respiratory tract.Physiologically relevant ex vivo explant cultures of human bronchus and lung, human airway organoids, and in vitro cultures of differentiated primary human bronchial epithelial cells and type-I-like alveolar epithelial cells were used to study the cellular and tissue tropism, replication competence and induced innate immune response of 16 IBV strains isolated from 1940 to 2012 in comparison with human seasonal influenza A viruses (IAVs), H1N1 and H3N2. IBVs from the diverged Yamagata- and Victoria-like lineages and the earlier undiverged period were included.The majority of IBVs replicated productively in human bronchus and lung with similar competence to seasonal IAVs. IBVs infected a variety of cell types, including ciliated cells, club cells, goblet cells and basal cells, in human airway organoids. Like seasonal IAVs, IBVs are low inducers of pro-inflammatory cytokines and chemokines. Most results suggested a higher preference for the conducting airway than the lower lung and strain-specific rather than lineage-specific pathogenicity of IBVs.Our results highlighted the non-negligible virulence of IBVs which require more attention and further investigation to alleviate the disease burden, especially when treatment options are limited.


Subject(s)
Influenza B virus/physiology , Organoids/pathology , Organoids/virology , Respiratory System/pathology , Respiratory System/virology , Viral Tropism , Animals , Bronchi/pathology , Cell Differentiation , Dogs , Epithelial Cells/virology , Erythrocytes/cytology , Humans , Immunity, Innate , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Inhibitory Concentration 50 , Lung/pathology , Madin Darby Canine Kidney Cells , Organ Culture Techniques , Turkeys
8.
J Infect Dis ; 220(4): 578-588, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31001638

ABSTRACT

BACKGROUND: Highly pathogenic avian influenza (HPAI)-H7N9 virus arising from low pathogenic avian influenza (LPAI)-H7N9 virus with polybasic amino acid substitutions in the hemagglutinin was detected in 2017. METHODS: We compared the tropism, replication competence, and cytokine induction of HPAI-H7N9, LPAI-H7N9, and HPAI-H5N1 in ex vivo human respiratory tract explants, in vitro culture of human alveolar epithelial cells (AECs) and pulmonary microvascular endothelial cells (HMVEC-L). RESULTS: Replication competence of HPAI- and LPAI-H7N9 were comparable in ex vivo cultures of bronchus and lung. HPAI-H7N9 predominantly infected AECs, whereas limited infection was observed in bronchus. The reduced tropism of HPAI-H7N9 in bronchial epithelium may explain the lack of human-to-human transmission despite a number of mammalian adaptation markers. Apical and basolateral release of virus was observed only in HPAI-H7N9- and H5N1-infected AECs regardless of infection route. HPAI-H7N9, but not LPAI-H7N9 efficiently replicated in HMVEC-L. CONCLUSIONS: Our findings demonstrate that a HPAI-H7N9 virus efficiently replicating in ex vivo cultures of human bronchus and lung. The HPAI-H7N9 was more efficient at replicating in human AECs and HMVEC-L than LPAI-H7N9 implying that endothelial tropism may involve in pathogenesis of HPAI-H7N9 disease.


Subject(s)
Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/virology , Respiratory System/virology , Viral Tropism , Virus Replication , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Cytokines/immunology , Endothelial Cells/immunology , Endothelial Cells/virology , Humans , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/immunology , Lung/immunology , Lung/virology , Respiratory System/immunology , Risk Assessment
9.
Antiviral Res ; 119: 1-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25882623

ABSTRACT

Highly pathogenic H5N1 viruses continue to transmit zoonotically, with mortality higher than 60%, and pose a pandemic threat. Antivirals remain the primary choice for treating H5N1 diseases and have their limitations. Encouraging findings highlight the beneficial effects of combined treatment of host targeting agents with immune-modulatory activities. This study evaluated the undefined roles of sterol metabolic pathway in viral replication and cytokine induction by H5N1 virus in human alveolar epithelial cells. The suppression of the sterol biosynthesis by Simvastatin in human alveolar epithelial cells led to reduction of virus replication and cytokine production by H5N1 virus. We further dissected the antiviral role of different regulators of the sterol metabolism, we showed that Zometa, FPT inhibitor III, but not GGTI-2133 had anti-viral activities against both H5N1 and H1N1 viruses. More importantly, FPT inhibitor III treatment significantly suppressed cytokine production by H5N1 virus infected alveolar epithelial cells. Since both viral replication itself and the effects of viral hyper-induction of cytokines contribute to the immunopathology of severe H5N1 disease, our findings highlights the therapeutic potential of FPT inhibitor III for severe human H5N1 diseases. Furthermore, our study is the first to dissect the roles of different steps in the sterol metabolic pathway in H5N1 virus replication and cytokine production.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/biosynthesis , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/physiology , Pulmonary Alveoli/virology , Sterols/biosynthesis , Virus Replication , Cells, Cultured , Cytokines/immunology , Diphosphonates/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Imidazoles/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H5N1 Subtype/immunology , Leucine/analogs & derivatives , Leucine/pharmacology , Naphthalenes/pharmacology , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Simvastatin/pharmacology , Virus Replication/drug effects , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...