Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(8): 2689-2710, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35043531

ABSTRACT

Crop models are powerful tools to support breeding because of their capability to explore genotype × environment×management interactions that can help design promising plant types under climate change. However, relationships between plant traits and model parameters are often model specific and not necessarily direct, depending on how models formulate plant morphological and physiological features. This hinders model application in plant breeding. We developed a novel trait-based multi-model ensemble approach to improve the design of rice plant types for future climate projections. We conducted multi-model simulations targeting enhanced productivity, and aggregated results into model-ensemble sets of phenotypic traits as defined by breeders rather than by model parameters. This allowed to overcome the limitations due to ambiguities in trait-parameter mapping from single modelling approaches. Breeders' knowledge and perspective were integrated to provide clear mapping from designed plant types to breeding traits. Nine crop models from the AgMIP-Rice Project and sensitivity analysis techniques were used to explore trait responses under different climate and management scenarios at four sites. The method demonstrated the potential of yield improvement that ranged from 15.8% to 41.5% compared to the current cultivars under mid-century climate projections. These results highlight the primary role of phenological traits to improve crop adaptation to climate change, as well as traits involved with canopy development and structure. The variability of plant types derived with different models supported model ensembles to handle related uncertainty. Nevertheless, the models agreed in capturing the effect of the heterogeneity in climate conditions across sites on key traits, highlighting the need for context-specific breeding programmes to improve crop adaptation to climate change. Although further improvement is needed for crop models to fully support breeding programmes, a trait-based ensemble approach represents a major step towards the integration of crop modelling and breeding to address climate change challenges and develop adaptation options.


Subject(s)
Oryza , Adaptation, Physiological , Climate Change , Oryza/genetics , Phenotype , Plant Breeding
2.
Plant Physiol ; 181(3): 881-890, 2019 11.
Article in English | MEDLINE | ID: mdl-31420444

ABSTRACT

The extraction of desirable heritable traits for crop improvement from high-throughput phenotyping (HTP) observations remains challenging. We developed a modeling workflow named "Digital Plant Phenotyping Platform" (D3P), to access crop architectural traits from HTP observations. D3P couples the Architectural model of DEvelopment based on L-systems (ADEL) wheat (Triticum aestivum) model (ADEL-Wheat), which describes the time course of the three-dimensional architecture of wheat crops, with simulators of images acquired with HTP sensors. We demonstrated that a sequential assimilation of the green fraction derived from Red-Green-Blue images of the crop into D3P provides accurate estimates of five key parameters (phyllochron, lamina length of the first leaf, rate of elongation of leaf lamina, number of green leaves at the start of leaf senescence, and minimum number of green leaves) of the ADEL-Wheat model that drive the time course of green area index and the number of axes with more than three leaves at the end of the tillering period. However, leaf and tiller orientation and inclination characteristics were poorly estimated. D3P was also used to optimize the observational configuration. The results, obtained from in silico experiments conducted on wheat crops at several vegetative stages, showed that the accessible traits could be estimated accurately with observations made at 0° and 60° zenith view inclination with a temporal frequency of 100 °Cd (degree day). This illustrates the potential of the proposed holistic approach that integrates all the available information into a consistent system for interpretation. The potential benefits and limitations of the approach are further discussed.


Subject(s)
Crops, Agricultural/growth & development , Plant Leaves/growth & development , Triticum/growth & development , Phenotype
3.
Sci Rep ; 7(1): 14858, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093514

ABSTRACT

The CO2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO2] (E-[CO2]) by comparison to free-air CO2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO2] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO2] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO2] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO2] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO2] × N interactions is necessary to better evaluate management practices under climate change.


Subject(s)
Carbon Dioxide/pharmacology , Oryza/growth & development , Climate Change , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Models, Biological , Nitrogen/pharmacology , Oryza/drug effects , Plant Leaves/anatomy & histology
4.
J Environ Manage ; 181: 590-601, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27423772

ABSTRACT

In a context of increased land and natural resources scarcity, the possibilities for local authorities and stakeholders of anticipating evolutions or testing the impact of envisaged developments through scenario simulation are new challenges. PRECOS's approach integrates data pertaining to the fields of water and soil resources, agronomy, urbanization, land use and infrastructure etc. It is complemented by a socio-economic and regulatory analysis of the territory illustrating its constraints and stakes. A modular architecture articulates modeling software and spatial and temporal representations tools. It produces indicators in three core domains: soil degradation, water and soil resources and agricultural production. As a territory representative of numerous situations of the Mediterranean Basin (urban pressures, overconsumption of spaces, degradation of the milieus), a demonstration in the Crau's area (Southeast of France) has allowed to validate a prototype of the approach and to test its feasibility in a real life situation. Results on the Crau area have shown that, since the beginning of the 16th century, irrigated grasslands are the cornerstones of the anthropic-system, illustrating how successfully men's multi-secular efforts have maintained a balance between environment and local development. But today the ecosystem services are jeopardized firstly by urban sprawl and secondly by climate change. Pre-diagnosis in regions of Emilia-Romagna (Italy) and Valencia (Spain) show that local end-users and policy-makers are interested by this approach. The modularity of indicator calculations and the availability of geo-databases indicate that PRECOS may be up scaled in other socio-economic contexts.


Subject(s)
Agriculture , Climate Change , Soil , Water Supply , Conservation of Natural Resources/methods , Europe , Forecasting , Humans , Models, Theoretical , Software
5.
Glob Chang Biol ; 21(3): 1328-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25294087

ABSTRACT

Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2 ]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2 ] and temperature.


Subject(s)
Agriculture , Climate , Models, Theoretical , Oryza/growth & development , Asia , Food Supply , Sensitivity and Specificity , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...