Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 91: 77-82, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22365683

ABSTRACT

We report for the first time an ultra performance liquid chromatographic method with tandem mass spectrometric detection (UPLC/MS/MS) for the determination of norethindrone alone in human plasma over the concentration range of 50.0-25000 pg mL(-1) using a sample volume of 0.250 mL. Norethindrone and its internal standard (ISTD), norethindrone-(13)C(2), were extracted from human plasma by supported liquid extraction (SLE). After evaporation of the organic solvent, samples were reconstituted and analyzed on an UPLC/MS/MS system. The UPLC system used a Waters BEH C18 (100 mm × 2.1mm, 1.7 µm) column with mobile phase A of 0.05% formic acid in water:acetonitrile (65:35, v/v) and mobile phase B of 0.05% formic acid in methanol:acetonitrile (50:50, v/v). The flow rate was 0.500 mL min(-1). The method was fully validated. The inter-run accuracy and precision at the lower limit of quantitation (LLOQ), low, mid and high quality control (QC) concentration levels were 99.2-108.4% with a <8.1% CV (coefficient of variation), respectively. The validated method has been successfully applied to analysis of thousands of pharmacokinetic samples.


Subject(s)
Norethindrone/blood , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Humans , Limit of Detection , Reproducibility of Results
2.
Antimicrob Agents Chemother ; 56(1): 124-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21986824

ABSTRACT

The present study investigated the pharmacokinetic/pharmacodynamic (PK/PD) relationships of a prototype biotin carboxylase (BC) inhibitor, PD-0162819, against Haemophilus influenzae 3113 in static concentration time-kill (SCTK) and one-compartment chemostat in vitro infection models. H. influenzae 3113 was exposed to PD-0162819 concentrations of 0.5 to 16× the MIC (MIC = 0.125 µg/ml) and area-under-the-curve (AUC)/MIC ratios of 1 to 1,100 in SCTK and chemostat experiments, respectively. Serial samples were collected over 24 h. For efficacy driver analysis, a sigmoid maximum-effect (E(max)) model was fitted to the relationship between bacterial density changes over 24 h and corresponding PK/PD indices. A semimechanistic PK/PD model describing the time course of bacterial growth and death was developed. The AUC/MIC ratio best explained efficacy (r(2) = 0.95) compared to the peak drug concentration (C(max))/MIC ratio (r(2) = 0.76) and time above the MIC (T>MIC) (r(2) = 0.88). Static effects and 99.9% killing were achieved at AUC/MIC values of 500 and 600, respectively. For time course analysis, the net bacterial growth rate constant, maximum bacterial density, and maximum kill rate constant were similar in SCTK and chemostat studies, but PD-0162819 was more potent in SCTK than in the chemostat (50% effective concentration [EC(50)] = 0.046 versus 0.34 µg/ml). In conclusion, basic PK/PD relationships for PD-0162819 were established using in vitro dynamic systems. Although the bacterial growth parameters and maximum drug effects were similar in SCTK and the chemostat system, PD-0162819 appeared to be more potent in SCTK, illustrating the importance of understanding the differences in preclinical models. Additional studies are needed to determine the in vivo relevance of these results.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Haemophilus Infections/drug therapy , Haemophilus influenzae/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Bacterial Proteins/metabolism , Biotin/metabolism , Carbon-Nitrogen Ligases/metabolism , Chromatography, Liquid , Colony Count, Microbial , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Haemophilus Infections/microbiology , Haemophilus influenzae/enzymology , Haemophilus influenzae/growth & development , Humans , Microbial Sensitivity Tests , Models, Biological , Tandem Mass Spectrometry
3.
Proc Natl Acad Sci U S A ; 106(6): 1737-42, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19164768

ABSTRACT

As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.


Subject(s)
Anti-Bacterial Agents/chemistry , Carbon-Nitrogen Ligases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Discovery , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Haemophilus influenzae/drug effects , Haemophilus influenzae/enzymology , Moraxella catarrhalis/drug effects , Moraxella catarrhalis/enzymology , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Small Molecule Libraries
4.
Eur J Pharmacol ; 591(1-3): 136-41, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18593577

ABSTRACT

An in vivo binding assay is characterized for [(3)H]M100907 binding to rat brain, as a measure of 5-HT(2A) receptor occupancy. Dose-response analyses were performed for various 5-HT(2A) antagonist reference agents, providing receptor occupancy ED(50) values in conjunction with plasma and brain concentration levels. Ketanserin and M100907 yielded dose-dependent increases in 5-HT(2A) receptor occupancy with ED(50)s of 0.316 mg/kg and 0.100 mg/kg, respectively. The atypical antipsychotics risperidone, olanzapine, and clozapine dose-dependently inhibited in vivo [(3)H]M100907 binding with ED(50) values of 0.051, 0.144, and 1.17 mg/kg, respectively. In contrast, the typical antipsychotic haloperidol exhibited only 20.1% receptor occupancy at 10 mg/kg despite producing dose-dependent increases in plasma and brain exposure levels. The novel psychopharmacologic agent asenapine dose-dependently occupied 5-HT(2A) receptors in rat brain with an ED(50) of 0.011 mg/kg, demonstrating higher 5-HT(2A) receptor potency compared with the other atypical antipsychotics tested. This enhanced potency was supported by a lower plasma exposure EC(50) of 0.477 ng/ml, compared with risperidone (1.57 ng/ml) and olanzapine (7.81 ng/ml) and was confirmed in time course studies. The validated [(3)H]M100907 rat in vivo binding assay allows for preclinical measurement of 5-HT(2A) receptor occupancy, providing essential data for understanding the pharmacological profile of novel antipsychotic agents. Additionally, the corresponding plasma and brain drug exposure data analyses provides a valuable data set for 5-HT(2A) reference agents by enabling direct comparison with any complementary studies performed in rats, thus providing a foundation for predictive pharmacokinetic/pharmacodynamic models and, importantly, allowing for translation to human receptor occupancy studies using [(11)C]M100907 positron emission tomography.


Subject(s)
Fluorobenzenes/metabolism , Piperidines/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Antagonists/metabolism , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacokinetics , Brain/metabolism , Dose-Response Relationship, Drug , Fluorobenzenes/administration & dosage , Fluorobenzenes/pharmacokinetics , Humans , Male , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Protein Binding , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacokinetics , Tissue Distribution
5.
Drug Metab Dispos ; 32(6): 620-5, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15155553

ABSTRACT

Organic anion transporters (Oats) mediate the initial step of active renal excretion, specifically substrate uptake into proximal tubule cells. Despite extensive characterization of rat Oats, mouse Oat expression patterns are virtually unknown. This study was designed to identify basal expression patterns of mouse Oat1 (Slc22a6), Oat2 (Slc22a7), and Oat3 (Slc22a8) mRNA, compare these patterns with those in rat, and characterize postnatal development of mouse Oat mRNA. Tissues were collected from adult male and female 129J and C57BL/6 mice, and male and female C57BL/6 mice 0 to 40 days of age. Oat mRNA levels were determined by branched DNA signal amplification. Mouse Oat1 mRNA was primarily expressed in kidney of both strains, with male predominance. Mouse Oat2 mRNA levels were highest in kidney of both strains without gender predominance. In both strains, Oat3 mRNA was highest in kidney, and liver expression was male-predominant. However, only 129J mice had higher Oat3 mRNA levels in female kidney than in male kidney. During postnatal development, both Oat1 and Oat2 mRNA levels began to rise after 25 days of age. Oat3 mRNA levels rose gradually from birth through 40 days of age. Oat2 mRNA increased 30-fold during the first 40 days, whereas Oat1 and Oat3 increased about 2-fold. The most notable species differences in Oat mRNA expression were a lack of Oat2 female predominance in mouse kidney and a less dramatic Oat3 male predominance in mouse liver. With the exception of a significant species difference in Oat2 expression, many similarities were found between rat and mouse Oat mRNA levels.


Subject(s)
Organic Anion Transport Protein 1/genetics , Organic Anion Transporters/genetics , Animals , Branched DNA Signal Amplification Assay , Female , Gene Expression Regulation, Developmental , Kidney/growth & development , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Organic Anion Transport Protein 1/biosynthesis , Organic Anion Transporters/biosynthesis , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Sequence Analysis, DNA , Sex Factors
6.
Drug Metab Dispos ; 31(5): 559-64, 2003 May.
Article in English | MEDLINE | ID: mdl-12695343

ABSTRACT

Messenger RNA levels of rat organic anion transporter 1 (Oat1; Slc22a6) and Oat2 (Slc22a7) in kidney and Oat3 (Slc22a8) in liver are gender-predominant. Oat1 and Oat3 are male-predominant, whereas Oat2 is female-predominant. Gonadectomized and hypophysectomized (HX) rats were studied to determine whether sex steroids and/or growth hormone (GH) are responsible for these gender-divergent patterns. GH was administered to HX rats by two daily injections (simulating male secretion) or continuous infusion (simulating female secretion). Oat1 mRNA levels, normally higher in male than female kidney, were lowered by gonadectomy and HX in male rats, but not in females. Additionally, GH injections or infusion did not alter Oat1 levels in HX rats. Oat2 mRNA levels, typically much higher in female than in male kidney, were unaffected by gonadectomy. However, HX dramatically decreased Oat2 in female kidney without altering male levels. GH administered by continuous infusion increased Oat2 in kidneys of both HX male and female rats, whereas injections had no affect. Gonadectomy reduced Oat3 mRNA levels in male livers without affecting levels in female livers. In contrast, HX decreased male and elevated female Oat3 mRNA. GH injections did not significantly change Oat3 mRNA levels in HX rats, but infusion decreased Oat3 mRNA in liver. In conclusion, androgens, but not GH, are responsible for the Oat1 mRNA gender difference in kidney; the female GH secretion pattern is responsible for the Oat2 mRNA gender difference in kidney; and both androgens and the female GH secretion pattern are responsible for the Oat3 mRNA gender difference in liver.


Subject(s)
Endocrine System/physiology , Organic Anion Transport Protein 1/biosynthesis , Organic Anion Transporters, Sodium-Independent/biosynthesis , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P450 Family 2 , Female , Growth Hormone/pharmacology , Kidney/growth & development , Kidney/metabolism , Liver/growth & development , Liver/metabolism , Male , Orchiectomy , Ovariectomy , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Sex Factors , Steroid 16-alpha-Hydroxylase/metabolism , Steroid Hydroxylases/metabolism
7.
Drug Metab Dispos ; 30(7): 838-44, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065443

ABSTRACT

Multiple drug resistance (mdr) genes encode P-glycoprotein, which is responsible for resistance to some cancer chemotherapeutic drugs and efflux of xenobiotics of cells. Thus, mdr can protect organs from xenobiotics. In rats, there are two mdr1 genes capable of xenobiotic transport, mdr1a and mdr1b. The purpose of this study was to determine the tissue distribution of rat mdr1a and mdr1b mRNA and whether microsomal enzyme inducers that increase phase I and II drug-metabolizing enzymes coordinately regulate mdr1a and/or mdr1b. The mRNA levels of mdr1a and mdr1b were determined using branched-DNA signal amplification technology. The highest level of expression of mdr1a mRNA was observed in the gastrointestinal tract, with levels increasing, respectively, from duodenum, jejunum, and ileum to large intestine. Expression levels of mdr1a mRNA in the cerebral cortex, cerebellum, kidney, lung, and liver were less than one-tenth of that in the ileum. The tissue distribution of mdr1b mRNA was similar to mdr1a with highest expression in the gastrointestinal tract but only about 3-fold higher than in most other tissues. The induction of mdr1a and mdr1b mRNA transcripts in liver, kidney, and ileum by treatment of rats with 18 chemicals representing aryl hydrocarbon receptor ligands, constitutive androstane receptor ligands, pregnane X receptor ligands, peroxisome proliferator-activated receptor ligands, electrophile-response-element activators, and CYP4502E1 inducers was assessed. Hepatic, renal, and intestinal expression of mdr1a and mdr1b mRNA were not significantly altered by treatment of rats with any of these classes of ligands. In conclusion, the primary expression of rat mdr1 genes is in the gastrointestinal tract where they are thought to function to decrease the absorption of some xenobiotics. Rat mdr1 gene expression is not readily increased by microsomal enzyme inducers in rats through coordinate mechanisms with phase I and II drug-metabolizing enzymes.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/biosynthesis , Drug Resistance, Multiple/physiology , Organic Chemicals/pharmacokinetics , Animals , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , Organic Chemicals/pharmacology , Rats , Rats, Sprague-Dawley , Tissue Distribution/drug effects , Tissue Distribution/physiology
8.
J Pharmacol Exp Ther ; 301(1): 145-51, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11907168

ABSTRACT

Rat organic anion transporter 1 (Oat1), Oat2, and Oat3, members of the organic anion transporter family, transport some organic anions across cellular membranes. Previously, highest Oat1 and Oat3 mRNA expression was reported in kidney and Oat2 in liver. However, gender and developmental differences in Oat expression remain unknown. This study describes gender- and age-specific patterns of rat organic anion transporter expression in various tissues. Oat mRNA expression was evaluated in adult male and female Sprague-Dawley rat tissues, and developmental expression was also determined in kidneys of Sprague-Dawley rats ranging in age from days 0 through 45. Expression was quantified using branched-DNA signal amplification. Oat1 mRNA expression was primarily observed in kidney. Surprisingly, Oat2 mRNA expression was also highest in kidney rather than in liver. Moreover, considerably higher Oat2 levels were seen in female kidney as compared with male. Finally, Oat3 mRNA expression was highest in kidney of both genders, whereas a male-predominant pattern was observed in liver. At birth, all kidney Oat mRNA levels were low. Renal Oat1 expression gradually increased throughout development, approaching adult levels at 30 days of age, where at days 40 and 45 Oat1 levels were greater in males than females. Oat2 expression in kidney was minimal through day 30 but increased dramatically at day 35 in females only. Lastly, Oat3 mRNA expression in kidney matured earliest, rapidly increasing from birth through day 10. These data indicate that Oat mRNA expression is primarily localized to the kidney, and observed expression patterns may explain some previously recognized age- and gender-dependent toxicities associated with chemical exposure.


Subject(s)
Aging/metabolism , Organic Anion Transport Protein 1/biosynthesis , Organic Anion Transporters, Sodium-Independent/biosynthesis , Animals , Blotting, Northern , DNA/analysis , DNA/biosynthesis , Female , Kidney/drug effects , Kidney/growth & development , Kidney/metabolism , Liver/growth & development , Liver/metabolism , Male , Oligonucleotide Probes , Pregnancy , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Sex Characteristics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...