Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 100(10): 101395, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34455310

ABSTRACT

Drying temperature (DT) of corn can influence its nutritional quality, but whether this is influenced by endosperm hardness is not clear. Two parallel experiments were conducted to investigate the effects of 2 yellow dent corn hybrids with average and hard kernel hardness, dried at 3 temperatures (35, 80, and 120°C), and 2 supplementation levels of an exogenous amylase (0, 133 g/ton of feed) on live performance, starch and protein digestibility, and energy utilization of Ross 708 male broilers. Twelve dietary treatments consisting of a 2 × 3 × 2 factorial arrangement were evaluated using 3-way ANOVA in a randomized complete block design. In Experiment 1, a total of 1,920 male-chicks were randomly allocated to 96 floor pens, whereas 480 day-old chicks were distributed among 96 cages for Experiment 2. At 40 d, interaction effects (P < 0.05) were detected on BWG, FCR, and flock uniformity. Supplementation with exogenous amylase resulted in heavier broilers, better FCR and flock uniformity, only in the diets based on corn dried at 35°C. Additionally, interaction effects were observed on FCR due to kernel hardness and DT (P < 0.01), kernel hardness and amylase supplementation (P < 0.001), and DT and amylase supplementation (P < 0.05). Exogenous amylase addition to the diets based on corn with an average hardness improved FCR up to 2 points (1.49 vs. 1.51 g:g) whereas there was no effect of amylase on FCR of broilers fed diets based on corn with hard endosperm. Total tract retention of starch was increased (P < 0.05) in broilers fed diets based on corn with average kernel hardness compared to hard kernel. Corn dried at 80 and 120°C had up to 1.21% points less starch total tract retention than the one dried at 35°C. Supplementing alpha-amylase resulted in beneficial effects for broiler live performance, energy utilization, and starch total tract digestibility results. Treatment effects on starch characteristics were explored. Corn endosperm hardness, DT and exogenous amylase can influence the live performance of broilers. However, these factors are not independent and so must be manipulated strategically to improve broiler performance.


Subject(s)
Chickens , Zea mays , Amylases , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements/analysis , Digestion , Hardness , Nutrients , Temperature
2.
Poult Sci ; 99(11): 5681-5696, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142486

ABSTRACT

Broiler live performance may be influenced by postharvest corn drying temperature, and results could depend on particle size after grinding. The supplementation with an exogenous amylase may improve performance parameters, but responses to enzymes are also affected by particle size. Two parallel experiments were conducted to evaluate the effects of hard-kernel corn dried at 2 temperatures (35°C and 120°C), ground at 2 particle sizes (coarse or fine), and 3 supplementation levels (0, 133, and 266 g ton-1) of an exogenous amylase on live performance, gastrointestinal organ development, energy utilization, and nutrient digestibility. Twelve dietary treatments resulting from a 2 × 2 × 3 factorial arrangement of drying temperature, particle size, and amylase supplementation were evaluated in both experiments. A total of 1,920 day-old male chicks were randomly allocated to 96 floor pens, while 480 chicks were distributed among 4 battery brooder units. Ileal and fecal samples were collected to determine energy utilization and nutrient digestibility using titanium dioxide as inert marker. At 42 D, organs were collected, and relative weight or length was determined. Data were analyzed using a three-way ANOVA in a randomized complete block design. Feeding fine corn-based diets showed improvements on live performance for both studies. At 40 D, supplementing 266 g ton-1 of amylase improved feed conversion ratio (P < 0.05) by 1 point compared to chickens that consumed nonsupplemented diets and feed with amylase at 133 g ton-1. Broilers fed coarse corn-based diets had heavier gizzard (P < 0.001) and liver (P < 0.05) than chickens that consumed fine corn-based diets. In addition, starch digestibility was improved by amylase (P < 0.05) at 133 g ton-1 and by feeding coarse corn-based diets (P = 0.06). For chicks raised in cages (16 D), AMEn was increased (P < 0.01) by amylase supplementation regardless of its inclusion level. In conclusion, drying temperature and particle size interactions influenced broiler live performance, gastrointestinal organ development, nutrient digestibility, and energy utilization, and these parameters were improved by supplementing amylase.


Subject(s)
Amylases , Animal Nutritional Physiological Phenomena , Chickens , Dietary Supplements , Particle Size , Temperature , Zea mays , Amylases/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Chickens/growth & development , Chickens/metabolism , Diet/veterinary , Dietary Supplements/analysis , Digestion/drug effects , Digestion/physiology , Gastrointestinal Tract/physiology , Male , Nutrients/metabolism , Random Allocation , Zea mays/chemistry , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...