Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Gels ; 9(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37102951

ABSTRACT

Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.

2.
Micromachines (Basel) ; 14(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36838077

ABSTRACT

In this work, the design, manufacture and measurement process of constant-breadth cams is presented. The motion law of the cam was designed by means of Bézier curves and the corresponding design desmodromic constraints. The cams were manufactured in two different materials employing two different processes: PLA cams with fused filament fabrication (FFF) and aluminium cams with computer numerical control (CNC) milling. The main aim of this work is to compare both types of cams regarding dimensional accuracy and surface finish, in order to evaluate if it would be possible to temporally replace a metallic cam with a plastic one during the repair of the first one. Dimensions were measured with micrometres and surface roughness with a contact roughness meter. The results show that, in diametral dimensions, similar dimensional error values were obtained for both the 3D-printed and the machined cams. However, in longitudinal dimensions, whose direction is perpendicular to the 3D-printed layers, the 3D-printed cams showed higher dimensional error than the machined ones. The average roughness Ra in the 3D-printed cams was 20 times higher than in the milled cams. According to the results, it would be recommended to temporally replace metallic cams with plastic ones in applications of low-power transmission. Given that in the literature little information is available about the measurement of 3D-printed desmodromic cams, this work will contribute to the study and analysis of this kind of 3D printed mechanism.

3.
Bioengineering (Basel) ; 11(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38247908

ABSTRACT

The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.

4.
J Funct Biomater ; 13(3)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36135590

ABSTRACT

Three-dimensionally printed metals and polymers have been widely used and studied in medical applications, yet ceramics also require attention. Ceramics are versatile materials thanks to their excellent properties including high mechanical properties and hardness, good thermal and chemical behavior, and appropriate, electrical, and magnetic properties, as well as good biocompatibility. Manufacturing complex ceramic structures employing conventional methods, such as ceramic injection molding, die pressing or machining is extremely challenging. Thus, 3D printing breaks in as an appropriate solution for complex shapes. Amongst the different ceramics, bioinert ceramics appear to be promising because of their physical properties, which, for example, are similar to those of a replaced tissue, with minimal toxic response. In this way, this review focuses on the different medical applications that can be achieved by 3D printing of bioinert ceramics, as well as on the latest advances in the 3D printing of bioinert ceramics. Moreover, an in-depth comparison of the different AM technologies used in ceramics is presented to help choose the appropriate methods depending on the part geometry.

5.
Polymers (Basel) ; 14(13)2022 07 05.
Article in English | MEDLINE | ID: mdl-35808799

ABSTRACT

Three-dimensional printing is revolutionizing the development of scaffolds due to their rapid-prototyping characteristics. One of the most used techniques is fused filament fabrication (FFF), which is fast and compatible with a wide range of polymers, such as PolyLactic Acid (PLA). Mechanical properties of the 3D printed polymeric scaffolds are often weak for certain applications. A potential solution is the development of composite materials. In the present work, metal-PLA composites have been tested as a material for 3D printing scaffolds. Three different materials were tested: copper-filled PLA, bronze-filled PLA, and steel-filled PLA. Disk-shaped samples were printed with linear infill patterns and line spacing of 0.6, 0.7, and 0.8 mm, respectively. The porosity of the samples was measured from cross-sectional images. Biocompatibility was assessed by culturing Human Bone Marrow-Derived Mesenchymal Stromal on the surface of the printed scaffolds. The results showed that, for identical line spacing value, the highest porosity corresponded to bronze-filled material and the lowest one to steel-filled material. Steel-filled PLA polymers showed good cytocompatibility without the need to coat the material with biomolecules. Moreover, human bone marrow-derived mesenchymal stromal cells differentiated towards osteoblasts when cultured on top of the developed scaffolds. Therefore, it can be concluded that steel-filled PLA bioprinted parts are valid scaffolds for bone tissue engineering.

6.
Gels ; 8(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35049575

ABSTRACT

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol -PVA-, Phytagel -PHY- and methacrylate gelatine -GelMA-) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.

7.
Polymers (Basel) ; 13(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883655

ABSTRACT

As is widely known, additive manufacturing (AM) allows very complex parts to be manufactured with porous structures at a relatively low cost and in relatively low manufacturing times. However, it is necessary to determine in a precise way the input values that allow better results to be obtained in terms of microgeometry, form errors, and dimensional error. In an earlier work, the influence of the process parameters on surface roughness obtained in fused filament fabrication (FFF) processes was analyzed. This present study focuses on form errors as well as on dimensional error of hemispherical cups, with a similar shape to that of the acetabular cup of hip prostheses. The specimens were 3D printed in polylactic acid (PLA). Process variables are nozzle diameter, temperature, layer height, print speed, and extrusion multiplier. Their influence on roundness, concentricity, and dimensional error is considered. To do this, adaptive neuro-fuzzy inference systems (ANFIS) models were used. It was observed that dimensional error, roundness, and concentricity depend mainly on the nozzle diameter and on layer height. Moreover, high nozzle diameter of 0.6 mm and high layer height of 0.3 mm are not recommended. A desirability function was employed along with the ANFIS models in order to determine the optimal manufacturing conditions. The main aim of the multi-objective optimization study was to minimize average surface roughness (Ra) and roundness, while dimensional error was kept within the interval Dimensional Error≤0.01. When the simultaneous optimization of both the internal and the external surface of the parts is performed, it is recommended that a nozzle diameter of 0.4 mm be used, to have a temperature of 197 °C, a layer height of 0.1 mm, a print speed of 42 mm/s, and extrusion multiplier of 94.8%. This study will help to determine the influence of the process parameters on the quality of the manufactured parts.

8.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835706

ABSTRACT

The main aim of the present paper is to study and analyze surface roughness, shrinkage, porosity, and mechanical strength of dense yttria-stabilized zirconia (YSZ) samples obtained by means of the extrusion printing technique. In the experiments, both print speed and layer height were varied, according to a 22 factorial design. Cuboid samples were defined, and three replicates were obtained for each experiment. After sintering, the shrinkage percentage was calculated in width and in height. Areal surface roughness, Sa, was measured on the lateral walls of the cuboids, and total porosity was determined by means of weight measurement. The compressive strength of the samples was determined. The lowest Sa value of 9.4 µm was obtained with low layer height and high print speed. Shrinkage percentage values ranged between 19% and 28%, and porosity values between 12% and 24%, depending on the printing conditions. Lowest porosity values correspond to low layer height and low print speed. The same conditions allow obtaining the highest average compressive strength value of 176 MPa, although high variability was observed. For this reason, further research will be carried out about mechanical strength of ceramic 3D printed samples. The results of this work will help choose appropriate printing conditions extrusion processes for ceramics.

9.
Materials (Basel) ; 14(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576682

ABSTRACT

Fused Filament Fabrication (FFF) is one of the most extensive additive manufacturing technologies for printing prototypes or final parts in various fields. Some printed parts need to meet structural requirements to be functional parts. Therefore, it is necessary to know the mechanical behavior of the printed samples as a function of the printing parameters in order to optimize the material used during the manufacturing process. It is known that FFF parts can present orthotropic characteristics as a consequence of the manufacturing process, in which the material is deposited layer by layer. Therefore, these characteristics must be considered for a correct evaluation of the printed parts from a structural point of view. In this paper, the influence of the type of filling pattern on the main mechanical properties of the printed parts is analyzed. For this purpose, the first parts are 3D printed using three different infill patterns, namely grid, linear with a raster orientation of 0 and 90°, and linear with a raster orientation of 45°. Then, experimental tensile tests, on the one hand, and numerical analyses using finite elements, on the other hand, are carried out. The elastic constants of the material are obtained from the experimental tests. From the finite element analysis, using a simple approach to create a Representative Volume Model (RVE), the constitutive characteristics of the material are estimated: Young's Moduli and Poisson's ratios of the printed FFF parts. These values are successfully compared with those of the experimental tests. The results clearly show differences in the mechanical properties of the FFF printed parts, depending on the internal arrangement of the infill pattern, even if similar 3D printing parameters are used.

10.
Polymers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34301141

ABSTRACT

Fused filament fabrication (FFF) 3D printing technology allows very complex parts to be obtained at a relatively low cost and in reduced manufacturing times. In the present work, the effect of main 3D printing parameters on roughness obtained in curved surfaces is addressed. Polylactic acid (PLA) hemispherical cups were printed with a shape similar to that of the acetabular part of the hip prostheses. Different experiments were performed according to a factorial design of experiments, with nozzle diameter, temperature, layer height, print speed and extrusion multiplier as variables. Different roughness parameters were measured-Ra, Rz, Rku, Rsk-both on the outer surface and on the inner surface of the parts. Arithmetical mean roughness value Ra and greatest height of the roughness profile Rz are usually employed to compare the surface finish among different manufacturing processes. However, they do not provide information about the shape of the roughness profile. For this purpose, in the present work kurtosis Rku and skewness Rsk were used. If the height distribution in a roughness profile follows a normal law, the Rku parameter will take a value of 3. If the profile distribution is symmetrical, the Rsk parameter will take a value of 0. Adaptive neural fuzzy inference system (ANFIS) models were obtained for each response. Such models are often employed to model different manufacturing processes, but their use has not yet been extended to 3D printing processes. All roughness parameters studied depended mainly on layer height, followed by nozzle diameter. In the present work, as a general trend, Rsk was close to but lower than 0, while Rku was slightly lower than 3. This corresponds to slightly higher valleys than peaks, with a rounded height distribution to some degree.

11.
Polymers (Basel) ; 13(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918648

ABSTRACT

Extrusion printing processes allow for manufacturing complex shapes in a relatively cheap way with low-cost machines. The present study analyzes the effect of printing parameters on dimensional error, roughness, and porosity of printed PLA parts obtained with grid structure. Parts are obtained by means of the fused filament fabrication (FFF) process. Four variables are chosen: Layer height, temperature, speed, and flow rate. A two-level full factorial design with a central point is used to define the experimental tests. Dimensional error and porosity are measured with a profile projector, while roughness is measured with a contact roughness meter. Mathematical regression models are found for each response, and multi-objective optimization is carried out by means of the desirability function. Dimensional error and roughness depend mainly on layer height and flow rate, while porosity depends on layer height and printing speed. Multi-objective optimization shows that recommended values for the variables are layer height 0.05 mm, temperature 195 ºC, speed 50 mm/min, and flow rate 0.93, when dimensional error and roughness are to be minimized, and porosity requires a target value of 60%. The present study will help to select appropriate printing parameters for printing porous structures such as those found in prostheses, by means of extrusion processes.

12.
Materials (Basel) ; 15(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009221

ABSTRACT

Honing processes are currently employed to obtain a cross-hatched pattern on the internal surfaces of cylinders that favors oil flow in combustion engines or hydraulic cylinders. The main aim of the present paper is to optimize the machining conditions in honing processes with respect to surface roughness, material removal rate and tool wear by means of the desirability function. Five process variables are considered: grain size, density, pressure, linear speed and tangential speed. Later, a sensitivity analysis is performed to determine the effect of the variation of the importance given to each response on the results of the optimization process. In the rough and semi-finish honing steps, variations of less than 5% of the importance value do not cause substantial changes in the optimization process. On the contrary, in the finish honing step, small changes in the importance values lead to modifications in the optimization process, mainly regarding pressure. Thus, the finish honing phase is more sensitive to changes in the optimization process than the rough and the semi-finish honing phases. The present paper will help users of honing machines to select proper values for the process variables.

13.
Materials (Basel) ; 13(9)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392727

ABSTRACT

Prostheses made from ceramic materials have the advantages of producing little debris and having good durability, compared with those made from metal and plastic. For example, hip prostheses require a porous external area that allows their fixation by means of osseointegration and a solid internal area that will be in contact with the femoral head. The manufacturing of complex ceramic shapes, by means of machining processes, for example, is complicated and can lead to breakage of the parts because of their fragility. The direct ink writing (DIW) process allows the printing of ceramic pastes into complex shapes that achieve their final strength after a heat treatment operation. This paper studies both the dimensional error and surface finish of porous zirconia prismatic parts prior to sintering. The variables considered are infill, layer height, printing speed, extrusion multiplier and bed temperature. The responses are the dimensional error of the lateral walls of the samples and an areal roughness parameter, the arithmetical mean height, Sa. Mathematical models are found for each response, and multiobjective optimization is carried out by means of the desirability function. The dimensional error depends mainly on the interaction between layer height and infill, while the roughness on the interaction between infill and printing speed. Thus, infill is an important factor for both responses. In the future, the behavior of compact printed parts will be addressed.

14.
Materials (Basel) ; 13(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861413

ABSTRACT

The objective of this research is to characterise the material poly lactic acid (PLA), printed by fused deposition modelling (FDM) technology, under three loading conditions-tension, compression and bending-in order to get data that will allow to simulate structural components. In the absence of specific standards for materials manufactured in FDM technology, characterisation is carried out based on ASTM International standards D638, D695 and D790, respectively. Samples manufactured with the same printing parameters have been built and tested; and the tensile, compressive and flexural properties have been determined. The influences of the cross-sectional shape and the specimen length on the strength and elastic modulus of compression are addressed. By analysing the mechanical properties obtained in this way, the conclusion is that they are different, are not coherent with each other, and do not reflect the bimodular nature (different behaviour of material in tension and compression) of this material. A finite element (FE) model is used to verify these differences, including geometric non-linearity, to realistically reproduce conditions during physical tests. The main conclusion is that the test methods currently used do not guarantee a coherent set of mechanical properties useful for numerical simulation, which highlights the need to define new characterisation methods better adapted to the behaviour of FDM-printed PLA.

15.
Materials (Basel) ; 12(23)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766409

ABSTRACT

In the present paper, we address the influence of print orientation angle on surface roughness obtained in lateral walls in fused deposition modelling (FDM) processes. A geometrical model is defined that considers the shape of the filaments after deposition, in order to define a theoretical roughness profile, for a certain print orientation angle. Different angles were considered between 5° and 85°. Simulated arithmetical mean height of the roughness profile, Ra values, were calculated from the simulated profiles. The Ra simulated results were compared to the experimental results, which were carried out with cylindrical PLA (polylactic acid) samples. The simulated Ra values were similar to the experimental values, except for high angles above 80°, where experimental roughness decreased while simulated roughness was still high. Low print orientation angles show regular profiles with rounded peaks and sharp values. At a print orientation angle of 85°, the shape of the profile changes with respect to lower angles, showing a gap between adjacent peaks. At 90°, both simulated and experimental roughness values would be close to zero, because the measurement direction is parallel to the layer orientation. Other roughness parameters were also measured: maximum height of profile, Rz, kurtosis, Rku, skewness, Rsk, and mean width of the profile elements, Rsm. At high print orientation angles, Rz decreases, Rku shifts to positive, Rsk slightly increases, and Rsk decreases, showing the change in the shape of the roughness profiles.

16.
Materials (Basel) ; 12(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875801

ABSTRACT

In the present study, the groups of cutting conditions that minimize surface roughness and its variability are determined, in ball-end milling operations. Design of experiments is used to define experimental tests performed. Semi-cylindrical specimens are employed in order to study surfaces with different slopes. Roughness was measured at different slopes, corresponding to inclination angles of 15°, 45°, 75°, 90°, 105°, 135° and 165° for both climb and conventional milling. By means of regression analysis, second order models are obtained for average roughness Ra and total height of profile Rt for both climb and conventional milling. Considered variables were axial depth of cut ap, radial depth of cut ae, feed per tooth fz, cutting speed vc, and inclination angle Ang. The parameter ae was the most significant parameter for both Ra and Rt in regression models. Artificial neural networks (ANN) are used to obtain models for both Ra and Rt as a function of the same variables. ANN models provided high correlation values. Finally, the optimal machining strategy is selected from the experimental results of both average and standard deviation of roughness. As a general trend, climb milling is recommended in descendant trajectories and conventional milling is recommended in ascendant trajectories. This study will allow the selection of appropriate cutting conditions and machining strategies in the ball-end milling process.

17.
Materials (Basel) ; 11(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501122

ABSTRACT

In tissue engineering, scaffolds can be obtained by means of 3D printing. Different structures are used in order to reduce the stiffness of the solid material. The present article analyzes the mechanical behavior of octet-truss microstructures. Three different octet structures with strut radii of 0.4, 0.5, and 0.6 mm were studied. The theoretical relative densities corresponding to these structures were 34.7%, 48.3%, and 61.8%, respectively. Two different values for the ratio of height (H) to width (W) were considered, H/W = 2 and H/W = 4. Several specimens of each structure were printed, which had the shape of a square base prism. Compression tests were performed and the elasticity modulus (E) of the octet-truss lattice-structured material was determined, both, experimentally and by means of Finite Element Methods (FEM). The greater the strut radius, the higher the modulus of elasticity and the compressive strength. Better agreement was found between the experimental and the simulated modulus of elasticity results for H/W = 4 than for H/W = 2. The octet-truss lattice can be considered to be a promising structure for printing in the field of tissue engineering.

18.
Materials (Basel) ; 11(9)2018 Aug 25.
Article in English | MEDLINE | ID: mdl-30149625

ABSTRACT

3D printed scaffolds can be used, for example, in medical applications for simulating body tissues or for manufacturing prostheses. However, it is difficult to print porous structures of specific porosity and pore size values with fused deposition modelling (FDM) technology. The present paper provides a methodology to design porous structures to be printed. First, a model is defined with some theoretical parallel planes, which are bounded within a geometrical figure, for example a disk. Each plane has randomly distributed points on it. Then, the points are joined with lines. Finally, the lines are given a certain volume and the structure is obtained. The porosity of the structure depends on three geometrical variables: the distance between parallel layers, the number of columns on each layer and the radius of the columns. In order to obtain mathematical models to relate the variables with three responses, the porosity, the mean of pore diameter and the variance of pore diameter of the structures, design of experiments with three-level factorial analysis was used. Finally, multiobjective optimization was carried out by means of the desirability function method. In order to favour fixation of the structures by osseointegration, porosity range between 0.5 and 0.75, mean of pore size between 0.1 and 0.3 mm, and variance of pore size between 0.000 and 0.010 mm² were selected. Results showed that the optimal solution consists of a structure with a height between layers of 0.72 mm, 3.65 points per mm² and a radius of 0.15 mm. It was observed that, given fixed height and radius values, the three responses decrease with the number of points per surface unit. The increase of the radius of the columns implies the decrease of the porosity and of the mean of pore size. The decrease of the height between layers leads to a sharper decrease of both the porosity and the mean of pore size. In order to compare calculated and experimental values, scaffolds were printed in polylactic acid (PLA) with FDM technology. Porosity and pore size were measured with X-ray tomography. Average value of measured porosity was 0.594, while calculated porosity was 0.537. Average value of measured mean of pore size was 0.372 mm, while calculated value was 0.434 mm. Average value of variance of pore size was 0.048 mm², higher than the calculated one of 0.008 mm². In addition, both round and elongated pores were observed in the printed structures. The current methodology allows designing structures with different requirements for porosity and pore size. In addition, it can be applied to other responses. It will be very useful in medical applications such as the simulation of body tissues or the manufacture of prostheses.

SELECTION OF CITATIONS
SEARCH DETAIL