Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37112503

ABSTRACT

A heterostructured nanocomposite MCM-41 was formed using the encapsulation method, where a silicon dioxide matrix-MCM-41 was the host matrix and synthetic fulvic acid was the organic guest. Using the method of nitrogen sorption/desorption, a high degree of monoporosity in the studied matrix was established, with a maximum for the distribution of its pores with radii of 1.42 nm. According to the results of an X-ray structural analysis, both the matrix and the encapsulate were characterized by an amorphous structure, and the absence of a manifestation of the guest component could be caused by its nanodispersity. The electrical, conductive, and polarization properties of the encapsulate were studied with impedance spectroscopy. The nature of the changes in the frequency behavior of the impedance, dielectric permittivity, and tangent of the dielectric loss angle under normal conditions, in a constant magnetic field, and under illumination, was established. The obtained results indicated the manifestation of photo- and magneto-resistive and capacitive effects. In the studied encapsulate, the combination of a high value of ε and a value of the tgδ of less than 1 in the low-frequency range was achieved, which is a prerequisite for the realization of a quantum electric energy storage device. A confirmation of the possibility of accumulating an electric charge was obtained by measuring the I-V characteristic, which took on a hysteresis behavior.

2.
Sensors (Basel) ; 22(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35161650

ABSTRACT

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I-XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5-89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2-77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac , Humans , Neural Networks, Computer
3.
Sensors (Basel) ; 21(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884029

ABSTRACT

Acute lymphoblastic leukemia is the most common cancer in children, and its diagnosis mainly includes microscopic blood tests of the bone marrow. Therefore, there is a need for a correct classification of white blood cells. The approach developed in this article is based on an optimized and small IoT-friendly neural network architecture. The application of learning transfer in hybrid artificial intelligence systems is offered. The hybrid system consisted of a MobileNet v2 encoder pre-trained on the ImageNet dataset and machine learning algorithms performing the role of the head. These were the XGBoost, Random Forest, and Decision Tree algorithms. In this work, the average accuracy was over 90%, reaching 97.4%. This work proves that using hybrid artificial intelligence systems for tasks with a low computational complexity of the processing units demonstrates a high classification accuracy. The methods used in this study, confirmed by the promising results, can be an effective tool in diagnosing other blood diseases, facilitating the work of a network of medical institutions to carry out the correct treatment schedule.


Subject(s)
Artificial Intelligence , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Algorithms , Humans , Machine Learning , Neural Networks, Computer , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
4.
Entropy (Basel) ; 23(4)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800598

ABSTRACT

Digital image correlation may be useful in many different fields of science, one of which is medicine. In this paper, the authors present the results of research aimed at detecting skin micro-shifts caused by pulsation of the veins. A novel technique using digital image correlation (DIC) and filtering the resulting shifts map to detect pulsating veins was proposed. After applying the proposed method, the veins in the forearm were visualized. The proposed technique may be used in the diagnosis of venous stenosis and may also contribute to reducing the number of adverse events during blood collection. The great advantage of the proposed method is the lack of the need to have specialized equipment, only a typical mobile phone camera is needed to perform the test.

SELECTION OF CITATIONS
SEARCH DETAIL