Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 29(2): 243-250, 2024 03.
Article in English | MEDLINE | ID: mdl-38580821

ABSTRACT

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Subject(s)
Calmodulin , Spectrophotometry, Infrared , Calmodulin/chemistry , Calmodulin/metabolism , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Protein Binding , Molecular Docking Simulation
2.
J Phys Chem B ; 123(40): 8387-8396, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31535866

ABSTRACT

Flexible protein sequences populate ensembles of rapidly interconverting states differentiated by small-scale fluctuations; however, elucidating whether and how the ensembles determine function experimentally is challenged by the combined high spatial and temporal resolution needed to capture the states. We used carbon-deuterium (C-D) bond vibrations incorporated as infrared probes to characterize with residue-specific detail the heterogeneity of states adopted by proline-rich (PR) sequences and assess their involvement in recognition of Src homology 3 domains. The C-D absorption envelopes provided evidence for two or three sub-populations at all proline residues. The changes in the subpopulations induced by binding generally reflected recognition by conformational selection but depended on the residue and the state of the ligand to illuminate distinct mechanisms among the PR ligands. Notably, the spectral data indicate that greater adaptability among the states is associated with reduced recognition specificity and that perturbation to the ensemble populations contributes to differences in binding entropy. Broadly, the study quantifies rapidly interconverting ensembles with residue-specific detail and implicates them in function.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Entropy , Kinetics , Peptides/chemistry , Peptides/metabolism , src Homology Domains
3.
Anal Chem ; 90(24): 14355-14362, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30462480

ABSTRACT

Conformational heterogeneity is critical to understanding protein function but challenging to quantify. Experimental approaches that can provide sufficient temporal and spatial resolution to measure even rapidly interconverting states at specific locations in proteins are needed to fully elucidate the contribution of conformational heterogeneity and dynamics to function. Infrared spectroscopy in combination with the introduction of carbon deuterium bonds, which provide frequency-resolved probes of their environments, can uncover rapidly interconverting states with residue-specific detail. Using this approach, we quantify conformational heterogeneity of proline-rich peptides associated with different proline backbone conformations, as well as reveal their dependence on the sequence context.


Subject(s)
Peptides/chemistry , Proline/chemistry , Spectrophotometry, Infrared , Amino Acid Sequence , Molecular Dynamics Simulation , Protein Structure, Secondary
4.
J Chem Phys ; 142(10): 101913, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25770502

ABSTRACT

Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...