Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 22(1): 261, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296265

ABSTRACT

BACKGROUND: COVID-19 pandemic has a devastating impact on the economies and health care system of sub-Saharan Africa. Healthcare workers (HWs), the main actors of the health system, are at higher risk because of their occupation. Serology-based estimates of SARS-CoV-2 infection among HWs represent a measure of HWs' exposure to the virus and could be used as a guide to the prevalence of SARS-CoV-2 in the community and valuable in combating COVID-19. This information is currently lacking in Ethiopia and other African countries. This study aimed to develop an in-house antibody testing assay, assess the prevalence of SARS-CoV-2 antibodies among Ethiopian high-risk frontline HWs. METHODS: We developed and validated an in-house Enzyme-Linked Immunosorbent Assay (ELISA) for specific detection of anti-SARS-CoV-2 receptor binding domain immunoglobin G (IgG) antibodies. We then used this assay to assess the seroprevalence among HWs in five public hospitals located in different geographic regions of Ethiopia. From consenting HWs, blood samples were collected between December 2020 and February 2021, the period between the two peaks of COVID-19 in Ethiopia. Socio-demographic and clinical data were collected using questionnaire-based interviews. Descriptive statistics and bivariate and multivariate logistic regression were used to determine the overall and post-stratified seroprevalence and the association between seropositivity and potential risk factors. RESULTS: Our successfully developed in-house assay sensitivity was 100% in serum samples collected 2- weeks after the first onset of symptoms whereas its specificity in pre-COVID-19 pandemic sera was 97.7%. Using this assay, we analyzed a total of 1997 sera collected from HWs. Of 1997 HWs who provided a blood sample, and demographic and clinical data, 51.7% were females, 74.0% had no symptoms compatible with COVID-19, and 29.0% had a history of contact with suspected or confirmed patients with SARS-CoV-2 infection. The overall seroprevalence was 39.6%. The lowest (24.5%) and the highest (48.0%) seroprevalence rates were found in Hiwot Fana Specialized Hospital in Harar and ALERT Hospital in Addis Ababa, respectively. Of the 821 seropositive HWs, 224(27.3%) of them had a history of symptoms consistent with COVID-19 while 436 (> 53%) of them had no contact with COVID-19 cases as well as no history of COVID-19 like symptoms. A history of close contact with suspected/confirmed COVID-19 cases is associated with seropositivity (Adjusted Odds Ratio (AOR) = 1.4, 95% CI 1.1-1.8; p = 0.015). CONCLUSION: High SARS-CoV-2 seroprevalence levels were observed in the five Ethiopian hospitals. These findings highlight the significant burden of asymptomatic infection in Ethiopia and may reflect the scale of transmission in the general population.


Subject(s)
COVID-19 , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Ethiopia/epidemiology , Female , Health Personnel , Humans , SARS-CoV-2 , Seroepidemiologic Studies
2.
Res Sq ; 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34312618

ABSTRACT

Background COVID-19 pandemic has a devastating impact on the economies and health care system of sub-Saharan Africa. Healthcare workers (HWs), the main actors of the health system, are at higher-risk because of their occupation. Serology-based estimates of SARS-CoV-2 infection among HWs represent a measure of HWs’ exposure to the virus and a guide to the prevalence of SARS-CoV-2 in the community. This information is currently lacking in Ethiopia and other African countries. This study aimed to develop an in-house antibody testing assay, assess the prevalence of SARS-CoV-2 antibodies among Ethiopian high-risk frontline HWs. Methods A cross-sectional seroprevalence study was conducted among HWs in five public hospitals located in different geographic regions of Ethiopia. Socio-demographic and clinical data were collected using questionnaire-based interviews. From consenting HWs, blood samples were collected between December 2020 and February 2021, the period between the two peaks of COVID-19 in Ethiopia. The collected sera were tested using an in-house immunoglobin G (IgG) enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 specific antibodies on sera collected from HWs. Results Of 1,997 HWs who provided a blood sample, demographic and clinical data, 50.5% were female, 74.0% had no symptoms compatible with COVID-19, and 29.0% had history of contact with suspected or confirmed patient with SARS-CoV-2 infection. The overall seroprevalence was 39.6%. The lowest (24.5%) and the highest (48.0%) seroprevalence rates were found in Hiwot Fana Specialized Hospital in Harar and ALERT Hospital in Addis Ababa, respectively. Of the 821 seropositive HWs, 224(27.3%) had history of symptoms consistent with COVID-19. A history of close contact with suspected/confirmed COVID-19 cases was strongly associated with seropositivity (Adjusted odds Ratio (AOR) =1.4, 95% CI 1.1-1.8; p=0.015). Conclusion High SARS-CoV-2 seroprevalence levels were observed in the five Ethiopian hospitals. These findings highlight the significant burden of asymptomatic infection in Ethiopia, and may reflect the scale of transmission in the general population.

3.
Signal Transduct Target Ther ; 6(1): 53, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558455

ABSTRACT

Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.


Subject(s)
Dependovirus/genetics , Genetic Therapy/trends , Genetic Vectors/genetics , Lentivirus/genetics , Gene Transfer Techniques , Humans
4.
Cell Rep ; 26(2): 460-468.e4, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30625328

ABSTRACT

Biological systems must possess mechanisms that prevent inappropriate responses to spurious environmental inputs. Caenorhabditis elegans has two breakdown pathways for the short-chain fatty acid propionate: a canonical, vitamin B12-dependent pathway and a propionate shunt that is used when vitamin B12 levels are low. The shunt pathway is kept off when there is sufficient flux through the canonical pathway, likely to avoid generating shunt-specific toxic intermediates. Here, we discovered a transcriptional regulatory circuit that activates shunt gene expression upon propionate buildup. Nuclear hormone receptor 10 (NHR-10) and NHR-68 function together as a "persistence detector" in a type 1, coherent feed-forward loop with an AND-logic gate to delay shunt activation upon propionate accumulation and to avoid spurious shunt activation in response to a non-sustained pulse of propionate. Together, our findings identify a persistence detector in an animal, which transcriptionally rewires propionate metabolism to maintain homeostasis.


Subject(s)
Homeostasis , Metabolic Networks and Pathways , Propionates/metabolism , Vitamin B 12/metabolism , Animals , Caenorhabditis elegans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transcriptome
5.
BMC Plant Biol ; 17(1): 144, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28835225

ABSTRACT

BACKGROUND: The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. RESULTS: All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. CONCLUSIONS: The RAP2.4 transcription factors form an environmentally and developmentally regulated transcription factor network, in which the various members affect the expression intensity of the others. Within the transcription factor family, RAP2.4a has a unique function as a general transcriptional activator of chloroplast peroxidase activity. The other RAP2.4 proteins mediate the fine-control and adjust the relative availability of 2CPA, sAPx and tAPx.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chloroplasts/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Peroxidases/genetics , Transcription Factors/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Ascorbate Peroxidases/genetics , Binding Sites , Chloroplasts/enzymology , DNA/metabolism , DNA, Bacterial , Gene Regulatory Networks , Peroxiredoxins/genetics , Promoter Regions, Genetic , Protein Binding , Reactive Oxygen Species/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...