Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Prostate ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824441

ABSTRACT

BACKGROUND: The unmet challenge in prostate cancer (PCa) management is to discriminate it from benign prostate hyperplasia (BPH) due to the lack of specific diagnostic biomarkers. Contemporary research on potential PCa biomarkers is directed toward methylated cell-free DNA (cfDNA) from liquid biopsies since epigenetic mechanisms are strongly involved in PCa development. METHODS: In the present research, cfDNA methylation of the LGALS3 gene in blood and seminal plasma of PCa and BPH patients was assessed using pyrosequencing, as well as LGALS3 DNA methylation in tissue biopsies. Liquid biopsy samples were taken from patients with clinical suspicion of PCa, who were subsequently divided into two groups, that is, 42 with PCa and 55 with BPH, according to the histopathological analysis. RESULTS: Statistically significant higher cfDNA methylation of LGALS3 in seminal plasma of BPH than in PCa patients was detected by pyrosequencing. ROC curve analysis showed that it could distinguish PCa and BPH patients with 56.4% sensitivity and 70.4% specificity, while PSA did not differ between the two patient groups. In contrast, there was no statistically significant difference in LGALS3 cfDNA methylation in blood plasma between the two patient groups. In prostate tumor tissue, there was a statistically significant DNA hypermethylation of LGALS3 compared to surrounding nontumor tissue and BPH tissue. CONCLUSIONS: The DNA hypermethylation of the LGALS3 gene represents an event specific to PCa development. In conclusion, LGALS3 cfDNA methylation in seminal fluid discriminates early PCa and BPH presenting itself as a powerful novel PCa biomarker highly outperforming PSA.

2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012122

ABSTRACT

The teratogenic activity of valproate (VPA), an antiepileptic and an inhibitor of histone deacetylase (HDACi), is dose-dependent in humans. Previous results showed that VPA impairs in vitro development and neural differentiation of the gastrulating embryo proper. We aimed to investigate the impact of a lower VPA dose in vitro and whether this effect is retained in transplants in vivo. Rat embryos proper (E9.5) and ectoplacental cones were separately cultivated at the air-liquid interface with or without 1 mM VPA. Embryos were additionally cultivated with HDACi Trichostatin A (TSA), while some cultures were syngeneically transplanted under the kidney capsule for 14 days. Embryos were subjected to routine histology, immunohistochemistry, Western blotting and pyrosequencing. The overall growth of VPA-treated embryos in vitro was significantly impaired. However, no differences in the apoptosis or proliferation index were found. Incidence of the neural tissue was lower in VPA-treated embryos than in controls. TSA also impaired growth and neural differentiation in vitro. VPA-treated embryos and their subsequent transplants expressed a marker of undifferentiated neural cells compared to controls where neural differentiation markers were expressed. VPA increased the acetylation of histones. Our results point to gastrulation as a sensitive period for neurodevelopmental impairment caused by VPA.


Subject(s)
Histone Deacetylase Inhibitors , Valproic Acid , Acetylation , Animals , Female , Gastrulation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Mammals/metabolism , Placenta/metabolism , Pregnancy , Rats , Valproic Acid/pharmacology
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806250

ABSTRACT

Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members-LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter's syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.


Subject(s)
Klinefelter Syndrome , Testicular Neoplasms , Aging/genetics , Fertility/genetics , Humans , Klinefelter Syndrome/metabolism , Male , Spermatogonia/metabolism , Testicular Neoplasms/metabolism , Testis/metabolism
4.
Anat Histol Embryol ; 51(5): 592-601, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35815632

ABSTRACT

Cartilage differentiates in rat limb buds cultivated in a chemically defined protein-free medium in the same manner as in the richer serum-supplemented medium. We aimed to investigate the remaining differentiation potential of pre-cultivated limb buds by subsequent transplantation in vivo. Rat front (FLBs) and hind-limb buds (HLBs) were isolated from Fischer rat dams at the 14th gestation day (GD 14) and cultivated at the air-liquid interface in Eagle's Minimum Essential Medium (MEM) alone; with 5 µM of 5-azacytidine (5azaC) or with rat serum (1:1). Overall growth was measured seven times during the culture by an ocular micrometre. After 14 days, explants were transplanted under the kidney capsule of adult males. Growth of limb buds was significantly lower in all limb buds cultivated in MEM than in those cultivated with serum. In MEM with 5azaC, growth of LBs was significantly lower only on day 3 of culture. Afterwards, it was higher throughout the culture period, although a statistically significant difference was assessed only for HLBs. In transplants, mixed structures developed with the differentiated transmembranous bone, cartilage with enchondral ossification, bone-marrow, sebaceous gland, and hair that have never been found in vitro. Nerves differentiated only in transplants precultivated in the serum-supplemented medium. We conclude that pre-cultivation of LBs in a chemically defined protein-free medium does not restrict osteogenesis and formation of epidermal appendages but is restrictive for neural tissue. These results are important for understanding limb development and regenerative medicine strategies.


Subject(s)
Limb Buds , Osteogenesis , Animals , Azacitidine , Epidermis , Male , Rats , Rats, Inbred F344
5.
Bosn J Basic Med Sci ; 22(4): 560-568, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35188093

ABSTRACT

Although DNA methylation epigenetically regulates development, data on global DNA methylation during development of limb buds (LBs) are scarce. We aimed to investigate the global DNA methylation developmental dynamics in rat LBs cultivated in a serum-supplemented (SS) and in chemically defined serum- and protein-free (SF) three-dimensional organ culture. Fischer rat front- and hind-LBs at 13th and 14th gestation days (GD) were cultivated at the air-liquid interface in Eagle's Minimal Essential Medium (MEM) or MEM with 50% rat serum for 14 days, as SF and SS conditions, respectively. The methylation of repetitive DNA sequences (SINE rat ID elements) was assessed by pyrosequencing. Development was evaluated by light microscopy and extracellular matrix glycosaminoglycans staining by Safranin O. Upon isolation, weak Safranin O staining was present only in more developed GD14 front-LBs. Chondrogenesis proceeded well in all cultures towards day 14, except in the SF-cultivated GD13 hind-LBs, where Safranin O staining was almost absent on day 3. That was associated with a higher percentage of DNA methylation than in SF-cultivated GD13 front-LBs on day three. In SF-cultivated front-LBs, a significant methylation increase between the 3rd and 14th day was detected. In SS-cultivated GD13 front-LBs, methylation increased significantly on day three and then decreased. In older GD14 SS-cultivated LBs, there was no increase of DNA methylation, but they were significantly hypomethylated relative to the SS-cultivated GD13 at days 3 and 14. We confirmed that the global DNA methylation increase is associated with less developed limb organ primordia that strive towards differentiation in vitro, which is of importance for regenerative medicine strategies.


Subject(s)
Chondrogenesis , Limb Buds , Animals , Cell Differentiation , DNA Methylation , Extracellular Matrix , Organ Culture Techniques , Rats
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054786

ABSTRACT

Antioxidant N-tert-Butyl-α-phenylnitron (PBN) partly protected embryos from the negative effects of a DNA demethylating drug 5-azacytidine during pregnancy. Our aim was to investigate PBN's impact on the placenta. Fischer rat dams were treated on gestation days (GD) 12 and 13 by PBN (40 mg/kg), followed by 5azaC (5 mg/kg) after one hour. Global methylation was assessed by pyrosequencing. Numerical density was calculated from immunohistochemical expression in single cells for proliferating (PCNA), oxidative (oxoguanosine) and nitrosative (nitrotyrosine) activity. Results were compared with the PBN-treated and control rats. PBN-pretreatment significantly increased placental weight at GD15 and GD20, diminished by 5azaC, and diminished apoptosis in GD 20 placentas caused by 5azaC. Oxoguanosine expression in placentas of 5azaC-treated dams was especially high in the placental labyrinth on GD 15, while PBN-pretreatment lowered its expression on GD 15 and GD 20 in both the labyrinth and basal layer. 5azaC enhanced nitrotyrosine level in the labyrinth of both gestational stages, while PBN-pretreatment lowered it. We conclude that PBN exerted its prophylactic activity against DNA hypomethylating agent 5azaC in the placenta through free radical scavenging, especially in the labyrinthine part of the placenta until the last day of pregnancy.


Subject(s)
Azacitidine/toxicity , Cyclic N-Oxides/pharmacology , DNA Methylation/drug effects , Oxidative Stress , Placenta/pathology , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Biomarkers/metabolism , Cell Proliferation/drug effects , Female , Nitrosation/drug effects , Organ Size/drug effects , Oxidative Stress/drug effects , Placenta/drug effects , Pregnancy , Proliferating Cell Nuclear Antigen/metabolism , Rats, Inbred F344 , Tyrosine/analogs & derivatives , Tyrosine/metabolism
7.
Cancers (Basel) ; 13(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33922968

ABSTRACT

Prostate cancer (PCa) is the most commonly diagnosed neoplasm among men. Since it often resembles benign prostate hyperplasia (BPH), biomarkers with a higher differential value than PSA are required. Epigenetic biomarkers in liquid biopsies, especially miRNA, could address this challenge. The absolute expression of miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were quantified in blood plasma and seminal plasma of 65 PCa and 58 BPH patients by digital droplet PCR. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. The higher expression of miR-182-5p and miR-375-3p in the blood plasma of PCa patients was statistically significant as compared to BPH (p = 0.0363 and 0.0226, respectively). Their combination achieved a specificity of 90.2% for predicting positive or negative biopsy results, while PSA cut-off of 4 µg/L performed with only 1.7% specificity. In seminal plasma, miR-375-3p, miR-182-5p, and miR-21-5p showed a statistically significantly higher expression in PCa patients with PSA >10 µg/L compared to ones with PSA ≤10 µg/L. MiR-182-5p and miR-375-3p in blood plasma show higher performance than PSA in discriminating PCa from BPH. Seminal plasma requires further investigation as it represents an obvious source for PCa biomarker identification.

8.
Bosn J Basic Med Sci ; 21(4): 386-397, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33175673

ABSTRACT

RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established is included in several diagnostic panels, its diagnostic utility is still experimental.


Subject(s)
Biomarkers, Tumor/genetics , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , DNA Methylation , Epigenomics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans
9.
Dis Markers ; 2020: 8841880, 2020.
Article in English | MEDLINE | ID: mdl-33224314

ABSTRACT

Testicular germ cell tumors (TGCTs) are ever more affecting the young male population. Germ cell neoplasia in situ (GCNIS) is the origin of TGCTs, namely, seminomas (SE) and a heterogeneous group of nonseminomas (NS) comprising embryonal carcinoma, teratoma, yolk sac tumor, and choriocarcinoma. Response to the treatment and prognosis, especially of NS, depend on precise diagnosis with a necessity for discovery of new biomarkers. We aimed to perform comprehensive in silico analysis at the DNA, RNA, and protein levels of six prospective (HOXA9, MGMT, CFC1, PRSS21, RASSF1A, and MAGEC2) and six known TGCT biomarkers (OCT4, SOX17, SOX2, SALL4, NANOG, and KIT) and assess its congruence with histopathological analysis in all forms of TGCTs. Cancer Hallmarks Analytics Tool, the Search Tool for the Retrieval of Interacting Genes/Proteins database, and UALCAN, an interactive web resource for analyzing cancer OMICS data, were used. In 108 TGCT and 48 tumor-free testicular samples, the immunoreactivity score (IRS) was calculated. SE showed higher frequency in DNA alteration, while DNA methylation was significantly higher for all prospective biomarkers in NS. In GCNIS, we assessed the clinical positivity of RASSF1 and PRSS21 in 52% and 62% of samples, respectively, in contrast to low or nil positivity in healthy seminiferous tubules, TGTCs as a group, SE, NS, or all NS components. Although present in approximately 80% of healthy seminiferous tubules (HT) and GCNIS, HOXA9 was diagnostically positive in 64% of TGCTs, while it was positive in 82% of NS versus 29% of SE. Results at the DNA, mRNA, and protein levels on putative and already known biomarkers were included in the suggested panels that may prove to be important for better diagnostics of various forms of TGCTs.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplasms, Germ Cell and Embryonal/pathology , Testicular Neoplasms/pathology , Biomarkers, Tumor/metabolism , Computer Simulation , DNA Methylation , Homeodomain Proteins/genetics , Humans , Male , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Seminoma/genetics , Seminoma/pathology , Testicular Neoplasms/diagnosis , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Testis/physiology
10.
Cancers (Basel) ; 12(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217978

ABSTRACT

Among testicular germ cell tumors, teratomas may often be very aggressive and therapy-resistant. Our aim was to investigate the impact of histone deacetylase inhibitors (HDACi) on the in vitro growth of experimental mouse teratoma by treating their embryonic source, the embryo-proper, composed only of the three germ layers. The growth of teratomas was measured for seven days, and histopathological analysis, IHC/morphometry quantification, gene enrichment analysis, and qPCR analysis on a selected panel of pluripotency and early differentiation genes followed. For the first time, within teratomas, we histopathologically assessed the undifferentiated component containing cancer stem cell-like cells (CSCLCs) and differentiated components containing numerous lymphocytes. Mitotic indices were higher than apoptotic indices in both components. Both HDACi treatments of the embryos-proper significantly reduced teratoma growth, although this could be related neither to apoptosis nor proliferation. Trichostatin A increased the amount of CSCLCs, and upregulated the mRNA expression of pluripotency/stemness genes as well as differentiation genes, e.g., T and Eomes. Valproate decreased the amount of CSCLCs, and downregulated the expressions of pluripotency/stemness and differentiation genes. In conclusion, both HDACi treatments diminished the inherent tumorigenic growth potential of the tumor embryonal source, although Trichostatin A did not diminish the potentially dangerous expression of cancer-related genes and the amount of CSCLC.

11.
Epigenomics ; 12(6): 543-558, 2020 03.
Article in English | MEDLINE | ID: mdl-32267174

ABSTRACT

Prostate cancer (PCa) represents the most commonly diagnosed neoplasm among men. miRNAs, as biomarkers, could further improve reliability in distinguishing malignant versus nonmalignant, and aggressive versus nonaggressive PCa. However, conflicting data was reported for certain miRNAs, and there was a lack of consistency and reproducibility, which has been attributed to diverse (pre)analytical factors. In order to address current challenges in miRNA clinical research on PCa, a PubMed-based literature search was conducted with the last update in May 2019. After identifying critical variations in designs and protocols that undermined clear-cut evidence acquisition, and reliable translation into clinical practice, we propose guidelines for most critical steps that should be considered in future research of miRNA as biomarkers, especially in PCa.


Subject(s)
MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Biomarkers, Tumor/metabolism , Humans , Male , Prostatic Neoplasms/metabolism
12.
FEBS J ; 287(21): 4783-4800, 2020 11.
Article in English | MEDLINE | ID: mdl-32056377

ABSTRACT

Antiepileptic/teratogen valproate (VPA) is a histone deacetylase inhibitor/epigenetic drug proposed for the antitumor therapy where it is generally crucial to target poorly or undifferentiated cells to prevent a recurrence. Transplanted rodent gastrulating embryos-proper (primitive streak and three germ layers) are the source of teratoma/teratocarcinoma tumors. Human primitive-streak remnants develop sacrococcygeal teratomas that may recur even when benign (well differentiated). To screen for unknown VPA impact on teratoma-type tumors, we used original 2-week embryo-derived teratoma in vitro biological system completed by a spent media metabolome analysis. Gastrulating 9.5-day-old rat embryos-proper were cultivated in Eagle's minimal essential medium (MEM) with 50% rat serum (controls) or with the addition of 2 mmVPA. Spent media metabolomes were analyzed by FTIR. Compared to controls, VPA acetylated histones; significantly diminished overall teratoma growth, impaired survival, increased the apoptotic index, and decreased proliferation index and incidence of differentiated tissues (e.g., neural tissue). Control teratomas continued to grow and differentiate for 14 days in isotransplants in vivo, but in vitro VPA-treated teratomas resorbed. Principal component analysis of FTIR results showed that spent media metabolomes formed well-separated clusters reflecting the treatment and day of cultivation. In metabolomes of VPA-treated teratomas, we found elevation of previously described histone acetylation biomarkers [amide I α-helix and A(CH3 )/A(CH2 )]) with apoptotic biomarkers within the amide I region for ß-sheets, and unordered and CH2 vibrations of lipids. VPA may be proposed for therapy of the undifferentiated component of teratoma tumors and this biological system completed by metabolome analysis, for a faster dual screening of antitumor/embryotoxic agents.


Subject(s)
Embryo, Mammalian/drug effects , Histones/metabolism , Teratoma/prevention & control , Valproic Acid/pharmacology , Acetylation/drug effects , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Embryo, Mammalian/metabolism , Female , Histone Deacetylase Inhibitors/pharmacology , Male , Rats , Spectroscopy, Fourier Transform Infrared , Teratoma/metabolism , Teratoma/pathology
13.
Stem Cells Dev ; 28(11): 717-733, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30672391

ABSTRACT

The spin-trap free radical scavenger N-tert-butyl-α-phenylnitron (PBN) ameliorated effects of several teratogens involving reactive oxygen species (ROS). We investigated for the first time whether PBN could ameliorate teratogenesis induced by a DNA hypomethylating hematological therapeutic 5-azacytidine (5azaC). At days 12 and 13 of gestation, Fisher rat dams were pretreated by an i.v. injection of PBN (40 mg/kg) and 1 h later by an i.p. injection of 5azaC (5mg/kg). Development was analyzed at gestation day 15 in embryos and day 20 in fetuses. PBN alone did not significantly affect development. PBN pretreatment restored survival of 5azaC-treated dams' embryos to the control level, restored weight of embryos and partially of fetuses, and partially restored crown-rump lengths. PBN pretreatment converted limb adactyly to less severe oligodactyly. PBN pretreatment restored global DNA methylation level in the limb buds to the control level. Cell proliferation in limb buds of all 5azaC-treated dams remained significantly lower than in controls. In the embryonic liver, PBN pretreatment normalized proliferation diminished significantly by 5azaC; whereas in embryonic vertebral cartilage, proliferation of all 5azaC-treated dams was significantly higher than in PBN-treated dams or controls. Apoptotic indices significantly enhanced by 5azaC in liver and cartilage were not influenced by PBN pretreatment. However, PBN significantly diminished ROS or reactive nitrogen species markers nitrotyrosine and 8-hydroxy-2'deoxyguanosine elevated by 5azaC in embryonic tissues, and, therefore, activity of this DNA hypomethylating agent was associated to the activation of free radicals. That pretreatment with PBN enhanced proliferation in the liver and not in immature tissue is interesting for the treatment of 5azaC-induced hepatotoxicity and liver regeneration.


Subject(s)
Azacitidine/toxicity , Cyclic N-Oxides/pharmacology , Free Radical Scavengers/pharmacology , Reactive Oxygen Species/metabolism , Teratogenesis/drug effects , Teratogens/toxicity , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Methylation/genetics , Female , Fingers/abnormalities , Hand Deformities, Congenital/prevention & control , Limb Buds/abnormalities , Limb Buds/drug effects , Liver Regeneration/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Inbred F344
14.
Int J Exp Pathol ; 99(3): 131-144, 2018 06.
Article in English | MEDLINE | ID: mdl-30066346

ABSTRACT

We screened for the impact of hyperthermal regimes varying in the cumulative equivalent minutes at 43°C (CEM43°C) and media composition on tumour development using an original teratoma in vitro model. Rat embryos (three germ layers) were microsurgically isolated and cultivated at the air-liquid interface. During a two week period, ectodermal, mesodermal and endodermal derivatives developed within trilaminar teratomas. Controls were grown at 37°C. Overall growth was measured, and teratoma survival and differentiation were histologically assessed. Cell proliferation was stereologically quantified by the volume density of Proliferating Cell Nuclear Antigen. Hyperthermia of 42°C, applied for 15 minutes after plating (CEM43°C 3.75 minutes), diminished cell proliferation (P Ë‚ .0001) and enhanced differentiation of both myotubes (P Ë‚ .01) and cylindrical epithelium (P Ë‚ .05). Hyperthermia of 43°C applied each day for 30 minutes during the first week (CEM43°C 210 minutes) impaired overall growth (P Ë‚ .01) and diminished cell proliferation (P Ë‚ .0001). Long-term hyperthermia of 40.5°C applied for two weeks (CEM43°C 630 minutes) significantly impaired survival (P Ë‚ .005). Long-term hyperthermia of 40.5°C applied from the second day when differentiation of tissues begins (CEM43°C 585 minutes) impaired survival (P Ë‚ .0001), overall growth (P Ë‚ .01) and cartilage differentiation (P Ë‚ .05). No teratomas survived extreme regimes: 43°C for 24 hours (CEM43°C 1440 minutes), hyperthermia in the scant serum-free medium (CEM43°C 630 minutes) or treatment with an anti-HSP70 antibody before long-term hyperthermia 40.5°C from the second day (CEM43°C 585 minutes). This in vitro research provided novel insights into the impact of hyperthermia on the development of experimental teratomas from their undifferentiated sources and are thus of potential interest for future therapeutic strategies in corresponding in vivo models.


Subject(s)
Embryo, Mammalian/pathology , Hyperthermia, Induced/methods , Teratoma/pathology , Teratoma/prevention & control , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Embryo Culture Techniques , Embryo, Mammalian/metabolism , Female , Pregnancy , Proliferating Cell Nuclear Antigen/metabolism , Rats, Inbred F344 , Teratoma/metabolism , Time Factors
16.
Wiley Interdiscip Rev Dev Biol ; 5(2): 186-209, 2016.
Article in English | MEDLINE | ID: mdl-26698368

ABSTRACT

A teratoma is a benign tumor containing a mixture of differentiated tissues and organotypic derivatives of the three germ layers, while a teratocarcinoma also contains embryonal carcinoma cells (EC cells). Experimental teratomas and teratocarcinomas have been derived from early mammalian embryos transplanted into the adult animal (ectopic sites). In the rat, the pluripotency of the transplanted epiblast was demonstrated and a quantifiable restriction of developmental potential persisted after subsequent transplantation of chemically defined cultivated postimplantation embryos. The rat is nonpermissive for teratocarcinoma development and rat pluripotent cell lines have been established only recently. Transplantation of mouse embryos, epiblast, or embryonic stem cells (mESCs) gave rise to teratocarcinomas. The pluripotency of reprogrammed human cells has been tested by a 'gold standard' trilaminar teratoma assay in immunocompromised mice in vivo. Human pluripotent stem cells proposed for use in regenerative medicine such as human embryonic stem cell (hESC), human nuclear-transfer/therapeutic cloning embryonic stem cell (NT-ESC), or human induced pluripotent stem cell (hiPSC) lines, once differentiated in vitro to the desired cell type, should be again tested in a long-term animal teratoma assay to exclude their malignancy. Such an approach led to a recently implemented human therapy with retinal pigmented epithelium. For greater biosafety, the teratoma assay should be standardized and complemented by assessments of mutations/epimutations, RNA/protein expression, and possible immunogenicity of autologous pluripotent cells. Furthermore, the standardized teratoma assay should be directed more to the assessment of EC/malignant cell features than of differentiated tissues, especially after a unique case of human therapy with neural stem cells was found to lead to malignancy. For further resources related to this article, please visit the WIREs website.


Subject(s)
Biomarkers, Tumor/metabolism , Early Detection of Cancer/methods , Neoplastic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Teratoma/pathology , Animals , Early Detection of Cancer/standards , Humans , Neoplastic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Teratoma/metabolism
18.
Bosn J Basic Med Sci ; 15(1): 21-5, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25725140

ABSTRACT

Structural changes in the rat placenta during the last third of gestation were for the first time assessed by stereology. Fischer female rats were euthanized on the day 16 or day 19 of gestation, and 35 placentas were collected. Three randomly selected placentas from each group were stereologically analyzed for the absolute volume. The proportion of the glycogenic cells and the trophoblast giant cells (TGC) in the basal part of the placenta was calculated using volume density. The absolute volume of the rat placenta on the day 16 of gestation was determined as 0.0638 cm3. The labyrinth comprised 0.0274 cm3, the basal plate 0.0271 cm3 and the decidua 0.0093 cm3. On the day 19 of gestation, the absolute volume of the placenta was 0.1627 cm3, the labyrinth occupied 0.0922 cm3, the basal plate 0.0596 cm3 and the decidua 0.0109 cm3. The volume density of trophoblast giant cells was 0.174 cm0 on the day 16 and 0.107 cm0 on the day 19 of gestation. The glycogenic cells comprised 0.379 percentage of the basal plate on the day 16 and 0.236 on the day 19 of gestation. We conclude that the absolute volume of the whole placenta and the labyrinth has increased from day 16 to the day 19 of gestation. In contrast, the volume density of glycogenic cells and trophoblast giant cells was higher on the day 16 than on the day 19 of gestation, probably due to the intensive trophoblast invasion during that time.


Subject(s)
Gestational Age , Imaging, Three-Dimensional/methods , Placenta/anatomy & histology , Pregnancy, Animal , Animals , Cell Size , Cellular Senescence , Female , Organ Size , Pregnancy , Rats , Trophoblasts/cytology
19.
Int J Exp Pathol ; 95(4): 238-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24945576

ABSTRACT

The DNA demethylating agent 5-azacytidine (5-azaC) has a teratogenic influence during rat development influencing both the embryo and the placenta. Our aim was to investigate its impact on early decidual cell proliferation before the formation of placenta. Thus, female Fischer rats received 5-azaC (5 mg/kg, i.p.) on the 2nd, 5th or 8th day of gestation and the decidual tissues were harvested on gestation day 9. They were then analysed immunohistochemically for expression of cell proliferation marker proliferating cell nuclear antigen (PCNA) in decidual cells and for global DNA methylation using the coupled restriction enzyme digestion, random amplification and pyrosequencing assays. We found that 5-azaC administered on the 5th and 8th (but not on 2nd) day of gestation led to increased PCNA expression in decidual cells compared with untreated controls. No significant changes in DNA methylation were detected, with either method, in any of the treated rat groups compared with untreated controls. Thus, we conclude that 5-azaC can stimulate decidual cell proliferation without simultaneously changing global DNA methylation level in treated cells.


Subject(s)
Azacitidine/pharmacology , Cell Proliferation/drug effects , Decidua/cytology , Enzyme Inhibitors/pharmacology , Animals , Biomarkers/metabolism , DNA Methylation/drug effects , Decidua/drug effects , Female , Models, Animal , Pregnancy , Pregnancy, Animal/drug effects , Pregnancy, Animal/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Inbred F344
20.
Croat Med J ; 54(5): 489-95, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24170728

ABSTRACT

AIM: To establish an organotypic in vitro model of limb bud development to verify whether epigenetic drug and teratogen 5-azacytidine (5azaC) has an effect on limb buds independent of its effects on the placenta. METHODS: Fischer strain rat fore- and hindlimb buds were microsurgically isolated from 13 days old embryos and cultivated in vitro for two weeks at the air-liquid interface in Eagle's minimum essential medium (MEM) with 50% rat serum. 30 µmol of 5azaC was added to the fresh medium. Overall growth was measured by an ocular micrometer. Routine histology, immunohistochemical detection of the proliferating cell nuclear antigen (PCNA), and stereological quantification of PCNA expression were performed. RESULTS: At four time points, significantly lower overall growth was detected for fore- and hindlimb bud explants cultivated with 5azaC in comparison to controls. After the culture period, numerical density of the PCNA signal for both types of limb buds was lower than for controls (P<0.001). Limb buds were initially covered by immature epithelium and contained mesenchyme, myotubes, single hemangioblasts, hemangioblast aggregates, blood islands, and capillaries. Regardless of the treatment, cartilage and epidermis differentiated, but cells and structures typical for vasculogenesis disappeared. CONCLUSION: Our findings, obtained outside of the maternal organism, stress the importance of compromised cell proliferation for 5azaC impact on limb buds. This investigation points to the necessity to establish alternatives to in vivo research on animals using teratogenic agents.


Subject(s)
Azacitidine/pharmacology , Cell Proliferation/drug effects , Epigenomics , Limb Buds/growth & development , Teratogens/pharmacology , Animals , Cell Differentiation/drug effects , Female , Humans , Limb Buds/cytology , Limb Buds/drug effects , Organ Culture Techniques , Pregnancy , Proliferating Cell Nuclear Antigen/analysis , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...