Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Int J Syst Evol Microbiol ; 70(5): 3513-3527, 2020 May.
Article in English | MEDLINE | ID: mdl-32374252

ABSTRACT

Three presumptive Modestobacter strains isolated from a high altitude Atacama Desert soil were the subject of a polyphasic study. The isolates, strains 1G4T, 1G51 and 1G52, were found to have chemotaxonomic and morphological properties that were consistent with their assignment to the genus Modestobacter. They formed a well supported clade in Modestobacter 16S rRNA gene trees and were most closely related to the type strain of 'Modestobacter excelsi' (99.8-99.9% similarity). They were also closely related to the type strains of Modestobacter caceresii (99.6 % similarity), Modestobacter italicus (99.7-99.9% similarity), Modestobacter lacusdianchii (98.4-99.2% similarity), Modestobacter marinus (99.4-99.5% similarity) and Modestobacter roseus (99.3-99.5% similarity), but were distinguished from their closest relatives by a combination of phenotypic features. Average nucleotide identity and digital DNA:DNA hybridization similarities drawn from comparisons of draft genome sequences of isolate 1G4T and its closest phylogenetic neighbours mentioned above, were well below the threshold used to assign closely related strains to the same species. The close relationship between isolate 1G4T and the type strain of M. excelsi was showed in a phylogenomic tree containing representative strains of family Geodermatophilaceae. The draft genome sequence of isolate 1G4T (size 5.18 Kb) was shown to be rich in stress related genes providing further evidence that the abundance of Modestobacter propagules in Atacama Desert habitats reflects their adaptation to the harsh environmental conditions prevalent in this biome. In light of all of these data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter. The name proposed for this taxon is Modestobacter altitudinis sp. nov., with isolate 1G4T (=DSM 107534T=PCM 3003T) as the type strain.


Subject(s)
Actinobacteria/classification , Desert Climate , Phylogeny , Soil Microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Int J Syst Evol Microbiol ; 70(5): 3210-3218, 2020 May.
Article in English | MEDLINE | ID: mdl-32320378

ABSTRACT

The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2-94.9 %) and in silico DNA-DNA hybridization (52.5-62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.


Subject(s)
Actinobacteria/classification , Altitude , Desert Climate , Soil Microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Syst Appl Microbiol ; 43(1): 126051, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31892483

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of three Modestobacter strains isolated from a high altitude Atacama Desert soil. The isolates, strains 1G6T, 1G14 and 1G50, showed chemotaxonomic and morphological properties characteristic of members of the genus Modestobacter. The peptidoglycan contained meso-diaminopimelic acid, the whole cell sugars were glucose and ribose (diagnostic sugars) and arabinose, the predominant menaquinone was MK-9(H4), polar lipid patterns contained diphosphatidylglycerol, glycophosphatidylinositol, phosphatidylethanolamine (diagnostic component), phosphatidylglycerol and phosphatidylinositol while whole cellular fatty acid profiles consisted of complex mixtures of saturated, unsaturated iso- and anteiso-components. The isolates were shown to have different BOX-PCR fingerprint and physiological profiles. They formed a distinct phyletic line in Modestobacter 16S rRNA gene trees, were most closely related to the type strain of Modestobacter italicus (99.9 % similarity) but were distinguished from this and other closely related Modestobacter type strains using a combination of phenotypic properties. Average nucleotide identity and digital DNA:DNA hybridization similarities between the draft genome sequences of isolate 1G6T and M. italicus BC 501T were 90.9 % and 42.3 %, respectively, indicating that they belong to different species. Based on these phenotypic and genotypic data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter, namely as Modestobacter excelsi with isolate 1G6T (=DSM 107535T =PCM 3004T) as the type strain. Analysis of the whole genome sequence of M. excelsi 1G6T (genome size of 5.26 Mb) showed the presence of genes and gene clusters that encode for properties that are in tune with its adaptation to extreme environmental conditions that prevail in the Atacama Desert biome.


Subject(s)
Actinobacteria/classification , Actinobacteria/physiology , Desert Climate , Soil Microbiology , Actinobacteria/chemistry , Actinobacteria/cytology , Altitude , DNA, Bacterial/genetics , Fatty Acids/analysis , Genome, Bacterial/genetics , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity , Stress, Physiological/genetics , Vitamin K 2/chemistry
4.
Antonie Van Leeuwenhoek ; 112(12): 1863-1874, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31407134

ABSTRACT

A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes.


Subject(s)
Actinobacteria/isolation & purification , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Actinobacteria/classification , Actinobacteria/genetics , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Soil Microbiology , South America
5.
Int J Syst Evol Microbiol ; 69(11): 3426-3436, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31395106

ABSTRACT

A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7T was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids iso-C16 : 0, iso-C15 : 0 and 10-methyl C17 : 0. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T (99.8 %) and Micromonospora cremea CR30T (99.7 %), and was separated readily from the latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low average nucleotide identity (92.59 %) and in silico DNA-DNA relatedness (51.7 %) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7T is considered to represent a novel species of Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. The type strain is 5R2A7T (=LMG 30755T=CECT 9656T).


Subject(s)
Altitude , Desert Climate , Micromonospora/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , Chile , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Glycolipids/chemistry , Micromonospora/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/chemistry
6.
Microbiology (Reading) ; 165(12): 1252-1264, 2019 12.
Article in English | MEDLINE | ID: mdl-31184575

ABSTRACT

The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.


Subject(s)
Bioprospecting , Extreme Environments , Microbiota/genetics , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/metabolism , Biological Products/metabolism , Drug Discovery , Ecosystem , Genes, Microbial , Genome, Bacterial/genetics
7.
Sci Rep ; 9(1): 4678, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886188

ABSTRACT

The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.


Subject(s)
Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Klebsiella Infections/therapy , Klebsiella pneumoniae/physiology , Liver Neoplasms/therapy , Methanol/isolation & purification , Micromonospora/physiology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Extracts , Chile , Desert Climate , Drug Discovery , Hep G2 Cells , Humans , Phylogeny , Soil Microbiology , Streptomyces/physiology , Stress, Physiological/genetics
8.
Int J Syst Evol Microbiol ; 68(9): 2712-2721, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29969090

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6T, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus. It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6T showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA-DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509T, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6T (NCIMB 15090T=NRRL B-65468T) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6T, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.


Subject(s)
Actinomycetales/classification , Desert Climate , Phylogeny , Soil Microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
BMC Genomics ; 19(1): 426, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29859036

ABSTRACT

BACKGROUND: Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. RESULTS: Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. CONCLUSIONS: Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.


Subject(s)
Actinomycetales/genetics , Actinomycetales/metabolism , Genomics , Phylogeny , Secondary Metabolism/genetics , Genome, Bacterial/genetics , Multigene Family/genetics
11.
Syst Appl Microbiol ; 41(5): 427-436, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29789182

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.


Subject(s)
Actinobacteria/classification , Actinobacteria/genetics , Desert Climate , Phylogeny , Soil Microbiology , Actinobacteria/chemistry , Actinobacteria/physiology , Chile , DNA, Bacterial/genetics , Genes, Bacterial , Genome, Bacterial/genetics , Multigene Family , Phenotype , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
12.
Antonie Van Leeuwenhoek ; 111(8): 1269-1272, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29804221

ABSTRACT

This brief introduction is intended to orientate the reader with respect to the principal environmental and historical features of the Atacama Desert, the oldest and continuously driest non-polar temperate desert on Earth. Exploration of its microbiology is relatively recent but both fundamental and applied research activities have grown dramatically in recent years reflecting the substantial interest in its microbial diversity, ecology, biogeochemistry, natural product potential and Mars-analogue properties of this unique and invigorating environment.


Subject(s)
Desert Climate , Soil Microbiology , Chile , Conservation of Natural Resources , Extreme Environments , Humans , Indians, South American
13.
Antonie Van Leeuwenhoek ; 111(8): 1315-1332, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29721711

ABSTRACT

An "in house" taxonomic approach to drug discovery led to the isolation of diverse actinobacteria from hyper-arid, extreme hyper-arid and very high altitude Atacama Desert soils. A high proportion of the isolates were assigned to novel taxa, with many showing activity in standard antimicrobial plug assays. The application of more advanced taxonomic and screening strategies showed that strains classified as novel species of Lentzea and Streptomyces synthesised new specialised metabolites thereby underpinning the premise that the extreme abiotic conditions in the Atacama Desert favour the development of a unique actinobacterial diversity which is the basis of novel chemistry. Complementary metagenomic analyses showed that the soils encompassed an astonishing degree of actinobacterial 'dark matter', while rank-abundance analyses showed them to be highly diverse habitats mainly composed of rare taxa that have not been recovered using culture-dependent methods. The implications of these pioneering studies on future bioprospecting campaigns are discussed.


Subject(s)
Actinobacteria/classification , Biodiversity , Desert Climate , Phylogeny , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Altitude , Anti-Bacterial Agents/isolation & purification , Chile , Ecosystem , Metagenomics , Species Specificity
14.
Antonie Van Leeuwenhoek ; 111(8): 1375-1387, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29480426

ABSTRACT

Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.


Subject(s)
Desert Climate , Micromonospora/classification , Micromonospora/isolation & purification , Phylogeny , Soil Microbiology , Chile , DNA, Bacterial/genetics , Genetic Variation , Genome, Bacterial , Micromonospora/genetics , Micromonospora/growth & development , RNA, Ribosomal, 16S/genetics
15.
Antonie Van Leeuwenhoek ; 111(9): 1523-1533, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29428970

ABSTRACT

The taxonomic position of a novel Amycolatopsis strain isolated from a high altitude Atacama Desert subsurface soil was established using a polyphasic approach. The strain, isolate H5T, was shown to have chemical properties typical of members of the genus Amycolatopsis such as meso-diaminopimelic acid as the diamino acid in the cell wall peptidoglycan, arabinose and galactose as diagnostic sugars and MK-9(H4) as the predominant isoprenologue. It also has cultural and morphological properties consistent with its classification in the genus, notably the formation of branching substrate hyphae which fragment into rod-like elements. 16S rRNA gene sequence analyses showed that the strain is closely related to the type strain of Amycolatopsis mediterranei but could be distinguished from this and other related Amycolatopsis strains using a broad range of phenotypic properties. It was separated readily from the type strain of Amycolatopsis balhymycina, its near phylogenetic neighbour, based on multi-locus sequence data, by low average nucleotide identity (92.9%) and in silico DNA/DNA relatedness values (51.3%) calculated from draft genome assemblies. Consequently, the strain is considered to represent a novel species of Amycolatopsis for which the name Amycolatopsis vastitatis sp. nov. is proposed. The type strain is H5T (= NCIMB 14970T = NRRL B-65279T).


Subject(s)
Actinomycetales/classification , Actinomycetales/genetics , Altitude , Phylogeny , Soil Microbiology , Actinomycetales/chemistry , Actinomycetales/growth & development , Base Composition , Carbohydrate Metabolism , Cell Wall/chemistry , Chile , DNA, Bacterial/genetics , Desert Climate , Diaminopimelic Acid/chemistry , Fatty Acids/metabolism , Genome, Bacterial/genetics , Hyphae/ultrastructure , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phenotype , RNA, Ribosomal, 16S/genetics , Sugars/metabolism
16.
J Antibiot (Tokyo) ; 71(4): 425-431, 2018 03.
Article in English | MEDLINE | ID: mdl-29362461

ABSTRACT

Bio-guided fractionation of the culture broth extract of Streptomyces asenjonii strain KNN 42.f recovered from an extreme hyper-arid Atacama Desert soil in northern Chile led to the isolation of three new bioactive ß-diketones; asenjonamides A-C (1-3) in addition to the known N-(2-(1H-indol-3-yl)-2-oxoethyl)acetamide (4), a series of bioactive acylated 4-aminoheptosyl-ß-N-glycosides; spicamycins A-E (5-9), and seven known diketopiperazines (10-16). All isolated compounds were characterized by HRESIMS and NMR analyses and tested for their antibacterial effect against a panel of bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Soil Microbiology , Streptomyces/metabolism , Anti-Bacterial Agents/isolation & purification , Bacteria/drug effects , Chile , Desert Climate , Fermentation , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Spectrometry, Mass, Electrospray Ionization , Streptomyces/chemistry
17.
Extremophiles ; 22(1): 47-57, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101684

ABSTRACT

The data reported in this paper are among the first relating to the microbiology of hyper-arid, very high altitude deserts and they provide base line information on the structure of actinobacterial communities. The high mountain Cerro Chajnantor landscape of the Central Andes in northern Chile is exposed to the world's most intense levels of solar radiation and its impoverished soils are severely desiccated. The purpose of this research was to define the actinobacterial community structures in soils at altitudes ranging from 3000 to 5000 m above sea level. Pyrosequencing surveys have revealed an extraordinary degree of microbial dark matter at these elevations that includes novel candidate actinobacterial classes, orders and families. Ultraviolet-B irradiance and a range of edaphic factors were found to be highly significant in determining community compositions at family and genus levels of diversity.


Subject(s)
Actinobacteria/isolation & purification , Altitude , Extreme Environments , Microbiota , Actinobacteria/classification , Actinobacteria/genetics , Soil/chemistry , Soil Microbiology , Sunlight
18.
Sci Rep ; 7(1): 8373, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827739

ABSTRACT

The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. This study focused on actinobacteria because they are keystone species in terrestrial ecosystems and are acknowledged as an unrivalled source of bioactive compounds. Metagenomic analyses of hyper-arid and extreme hyper-arid soils in this desert revealed a remarkable degree of actinobacterial 'dark matter', evidenced by a detected increase of 34% in families against those that are validly published. Rank-abundance analyses indicated that these soils were high-diversity habitats and that the great majority of designated 'rare' genera (up to 60% of all phylotypes) were always rare. These studies have enabled a core actinobacterial microbiome common to both habitats to be defined. The great majority of detected taxa have not been recovered by culture dependent methods, neither, with very few exceptions, has their functional ecology been explored. A microbial seed bank of this magnitude has significance not just for Atacama soil ecosystem resilience but represents an enormous untapped resource for biotechnology discovery programmes in an era where resistance to existing antibiotics is rapidly becoming a major threat to global health.


Subject(s)
Actinobacteria/isolation & purification , Biodiversity , Ecosystem , Soil Microbiology , Actinobacteria/classification , Actinobacteria/genetics , Chile , Desert Climate , Metagenomics
19.
Int J Syst Evol Microbiol ; 67(8): 2980-2985, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28820114

ABSTRACT

Eleven actinobacterial strains were isolated from a rock sample collected in the Atacama Desert. Molecular typing by BOX-PCR divided the strains into three clusters and showed that, although very similar, they were not clones. Three strains, ATK01, ATK03T and ATK17, each representing one of the defined BOX clusters, were chosen for further characterization. Phylogenetic analysis indicated that the strains were related to the genus Pseudonocardia and were recovered in a cluster together with Pseudonocardia bannensis YIM 63101T and Pseudonocardia xinjiangensis AS 4.1538T. Chemotaxonomic analyses confirmed their affiliation to the genus Pseudonocardia but differences were found between the new strains and their closest phylogenetic relatives. Physiological and fatty acid analyses also revealed differences between these strains and their phylogenetic neighbours supporting their status as a distinct species. Based on the overall data, it is proposed that strains ATK01, ATK03T and ATK17 represent a novel species of the genus Pseudonocardia for which the name Pseudonocardia nigra sp. nov. is proposed (type strain ATK03T=DSM 104088T=CECT 9183T).


Subject(s)
Actinomycetales/classification , Desert Climate , Phylogeny , Actinomycetales/genetics , Actinomycetales/isolation & purification , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Antonie Van Leeuwenhoek ; 110(9): 1133-1148, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28589342

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from hyper-arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Streptomyces species. Multi-locus sequence analysis based on five housekeeping gene alleles showed that the strains form a homogeneous taxon that is closely related to the type strains of Streptomyces ghanaensis and Streptomyces viridosporus. Representative isolates were shown to have chemotaxonomic and morphological properties consistent with their classification in the genus Streptomyces. The isolates have many phenotypic features in common, some of which distinguish them from S. ghanaensis NRRL B-12104T, their near phylogenetic neighbour. On the basis of these genotypic and phenotypic data it is proposed that the isolates be recognised as a new species within the genus Streptomyces, named Streptomyces asenjonii sp. nov. The type strain of the species is KNN35.1bT (NCIMB 15082T = NRRL B-65050T). Some of the isolates, including the type strain, showed antibacterial activity in standard plug assays. In addition, MLSA, average nucleotide identity and phenotypic data show that the type strains of S. ghanaensis and S. viridosporus belong to the same species. Consequently, it is proposed that the former be recognised as a heterotypic synonym of the latter and an emended description is given for S. viridosporus.


Subject(s)
Phylogeny , Soil Microbiology , Streptomyces/classification , Streptomyces/genetics , Amino Acids/metabolism , Anti-Bacterial Agents/pharmacology , Chile , Desert Climate , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Genome, Bacterial/genetics , Multilocus Sequence Typing , Phenotype , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Species Specificity , Streptomyces/chemistry , Streptomyces/drug effects , Sugars/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...