Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurol ; : e16345, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794967

ABSTRACT

BACKGROUND AND PURPOSE: The Mediterranean diet (MedDiet) has been associated with reduced dementia incidence in several studies. It is important to understand if diet is associated with brain health in midlife, when Alzheimer's disease and related dementias are known to begin. METHODS: This study used data from the PREVENT dementia programme. Three MedDiet scores were created (the Pyramid, Mediterranean Diet Adherence Screener [MEDAS] and MEDAS continuous) from a self-reported food frequency questionnaire. Primary outcomes were hippocampal volume and cube-transformed white matter hyperintensity volume. Secondary outcomes included cornu ammonis 1 and subiculum hippocampal subfield volumes, cortical thickness and measures of cognition. Sex-stratified analyses were run to explore differential associations between diet and brain health by sex. An exploratory path analysis was conducted to study if any associations between diet and brain health were mediated by cardiovascular risk factors for dementia. RESULTS: In all, 504 participants were included in this analysis, with a mean Pyramid score of 8.10 (SD 1.56). There were no significant associations between any MedDiet scoring method and any of the primary or secondary outcomes. There were no differences by sex in any analyses and no significant mediation between the Pyramid score and global cognition by cardiovascular risk factors. CONCLUSIONS: Overall, this study did not find evidence for an association between the MedDiet and either neuroimaging or cognition in a midlife population study. Future work should investigate associations between the MedDiet and Alzheimer's disease and related dementias biomarkers as well as functional neuroimaging in a midlife population.

2.
Sci Rep ; 14(1): 573, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38177228

ABSTRACT

To date, there is a considerable heterogeneity of methods to score Allostatic Load (AL). Here we propose a comprehensive algorithm (ALCS) that integrates commonly used approaches to generate AL risk categories and assess associations to brain structure deterioration. In a cohort of cognitively normal mid-life adults (n = 620, age 51.3 ± 5.48 years), we developed a comprehensive composite for AL scoring incorporating gender and age differences, high quartile approach, clinical reference values, and current medications, to then generate AL risk categories. Compared to the empirical approach (ALES), ALCS showed better model fit criteria and a strong association with age and sex. ALSC categories were regressed against brain and white matter hyperintensity (WMH) volumes. Higher AL risk categories were associated with increased total, periventricular, frontal, and left parietal WMH volumes, also showing better fit compared to ALES. When cardiovascular biomarkers were removed from the ALSC algorithm, only left-frontal WMHV remained associated with AL, revealing a strong vascular burden influencing the index. Our results agree with previous evidence and suggest that sustained stress exposure enhances brain deterioration in mid-life adults. Showing better fit than ALES, our comprehensive algorithm can provide a more accurate AL estimation to explore how stress exposure enhances age-related health decline.


Subject(s)
Allostasis , White Matter , Adult , Humans , Middle Aged , White Matter/diagnostic imaging , Brain , Magnetic Resonance Imaging
3.
Brain Commun ; 4(6): fcac263, 2022.
Article in English | MEDLINE | ID: mdl-36349120

ABSTRACT

Mutations in the SYNGAP1 gene are one of the common predictors of neurodevelopmental disorders, commonly resulting in individuals developing autism, intellectual disability, epilepsy, and sleep deficits. EEG recordings in neurodevelopmental disorders show potential to identify clinically translatable biomarkers to both diagnose and track the progress of novel therapeutic strategies, as well as providing insight into underlying pathological mechanisms. In a rat model of SYNGAP1 haploinsufficiency in which the exons encoding the calcium/lipid binding and GTPase-activating protein domains have been deleted (Syngap+/Δ-GAP ), we analysed the duration and occurrence of wake, non-rapid eye movement and rapid eye movement brain states during 6 h multi-electrode EEG recordings. We find that although Syngap+/Δ-GAP animals spend an equivalent percent time in wake and sleep states, they have an abnormal brain state distribution as the number of wake and non-rapid eye movement bouts are reduced and there is an increase in the average duration of both wake and non-rapid eye movement epochs. We perform connectivity analysis by calculating the average imaginary coherence between electrode pairs at varying distance thresholds during these states. In group averages from pairs of electrodes at short distances from each other, a clear reduction in connectivity during non-rapid eye movement is present between 11.5 Hz and 29.5 Hz, a frequency range that overlaps with sleep spindles, oscillatory phenomena thought to be important for normal brain function and memory consolidation. Sleep abnormalities were mostly uncorrelated to the electrophysiological signature of absence seizures, spike and wave discharges, as was the imaginary coherence deficit. Sleep spindles occurrence, amplitude, power and spread across multiple electrodes were not reduced in Syngap+/Δ-GAP rats, with only a small decrease in duration detected. Nonetheless, by analysing the dynamic imaginary coherence during sleep spindles, we found a reduction in high-connectivity instances between short-distance electrode pairs. Finally comparing the dynamic imaginary coherence during sleep spindles between individual electrode pairs, we identified a group of channels over the right somatosensory, association and visual cortices that have a significant reduction in connectivity during sleep spindles in mutant animals. This matched a significant reduction in connectivity during spindles when averaged regional comparisons were made. These data suggest that Syngap+/Δ-GAP rats have altered brain state dynamics and EEG connectivity, which may have clinical relevance for SYNGAP1 haploinsufficiency in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...