Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Microbiol Resour Announc ; : e0070824, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248543

ABSTRACT

Draft genomes were generated for three filamentous toxin-producing cyanobacterial strains cultivated from aquatic sources in Ohio sequenced by NovaSeq S4. Here, we report the classification and genome statistics of Planktothrix rubescens PR221, PR222, and PR223.

2.
Bull Environ Contam Toxicol ; 113(3): 30, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179721

ABSTRACT

Components of the lower food web (mussels, Caridina and Omena) were collected from stations from Winam Gulf, Lake Victoria, Kenya in 2022 and 2023 to analyze for stable isotopes and total mercury (THg). Temporal comparisons were made with data generated for the same species in 1998. Values of δ15N in mussels and Caridina were similar (6.89‰ vs. 6.78 ± 0.13‰), while Omena occupied an elevated trophic position (9.97 ± 0.24‰) with minor shifts in δ15N over time. All species had elevated δ13C values in 2022-2023 versus 1998 supportive of enhanced eutrophication in the Gulf. THg concentrations exhibited modest spatial differences between sites (< 2.6 fold), but not between Caridina and Omena. Larger temporal differences were apparent relative to spatial patterns with THg concentrations decreasing in study species by 2.8 to 4.1-fold between years. An exposure assessment indicated that Omena, commonly found in local markets, can be consumed up to 0.74 kg/month without generating excess THg exposures.


Subject(s)
Environmental Monitoring , Food Chain , Lakes , Mercury , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Mercury/analysis , Animals , Kenya , Lakes/chemistry , Bivalvia , Nitrogen Isotopes/analysis , Spatio-Temporal Analysis , Carbon Isotopes/analysis
3.
J Great Lakes Res ; 50(3)2024 Jun.
Article in English | MEDLINE | ID: mdl-39050868

ABSTRACT

Lake Erie algal bloom discussions have historically focused on cyanobacteria, with foundational "blooms like it hot" and "high nutrient" paradigms considered as primary drivers behind cyanobacterial bloom success. Yet, recent surveys have rediscovered winter-spring diatom blooms, introducing another key player in the Lake Erie eutrophication and algal bloom story which has been historically overlooked. These blooms (summer vs. winter) have been treated as solitary events separated by spatial and temporal gradients. However, new evidence suggests they may not be so isolated, linked in a manner that manifests as an algal bloom cycle. Equally notable are the emerging reports of cyanobacterial blooms in cold and/or oligotrophic freshwaters, which have been interpreted by some as shifts in classical bloom paradigms. These emerging bloom reports have led many to ask "what is a bloom?". Furthermore, questioning classic paradigms has caused others to wonder if we are overlooking additional factors which constrain bloom success. In light of emerging data and ideas, we revisited foundational concepts within the context of Lake Erie algal blooms and derived five key take-aways: 1) Additional bloom-formers (diatoms) need to be included in Lake Erie algal discussions, 2) The term "bloom" must be reinforced with a clear definition and quantitative metrics for each event, 3) Algal blooms should not be studied solitarily, 4) Shifts in physiochemical conditions serve as an alternative interpretation to potential shifts in ecological paradigms, 5) Additional factors which constrain bloom success and succession (i.e., pH and light) require consideration.

4.
Harmful Algae ; 136: 102656, 2024 06.
Article in English | MEDLINE | ID: mdl-38876531

ABSTRACT

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Subject(s)
Bays , Harmful Algal Bloom , Phytoplankton , Planktothrix , Phytoplankton/physiology , Phytoplankton/growth & development , Bays/microbiology , Microcystins/metabolism , Microcystins/analysis , Environmental Monitoring , Seasons , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cyanobacteria/growth & development , Cyanobacteria/physiology , Cyanobacteria/genetics
5.
Environ Microbiol Rep ; 16(3): e13297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885952

ABSTRACT

The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.


Subject(s)
Bacterial Toxins , Cyanobacteria , Harmful Algal Bloom , Lakes , Lakes/microbiology , Lakes/chemistry , Kenya , Cyanobacteria/genetics , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Bacterial Toxins/genetics , Microcystins/genetics , RNA, Ribosomal, 16S/genetics , Microbiota , Phytoplankton/genetics , Cyanobacteria Toxins , Alkaloids/analysis , Alkaloids/metabolism , RNA, Ribosomal, 18S/genetics , Phylogeny
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38366077

ABSTRACT

The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.


Subject(s)
Diatoms , Diatoms/genetics , Ecosystem , Ice Cover , Lakes , Water
7.
Microbiol Resour Announc ; 13(3): e0120523, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38376339

ABSTRACT

Metagenome-assembled genomes were generated for two xenic cyanobacterial strains collected from aquatic sources in Kenya and sequenced by NovaSeq S4. Here, we report the classification and genome statistics of Microcystis panniformis WG22 and Limnospira fusiformis LS22.

8.
Anal Biochem ; 687: 115429, 2024 04.
Article in English | MEDLINE | ID: mdl-38113981

ABSTRACT

Microcystin-producing cyanobacterial blooms are a global issue threatening drinking water supplies and recreation on lakes and beaches. Direct measurement of microcystins is the only way to ensure waters have concentrations below guideline concentrations; however, analyzing water for microcystins takes several hours to days to obtain data. We tested LightDeck Diagnostics' bead beater cell lysis and two versions of the quantification system designed to give microcystin concentrations within 20 min and compared it to the standard freeze-thaw cycle lysis method and ELISA quantification. The bead beater lyser was only 30 % effective at extracting microcystins compared to freeze-thaw. When considering freeze-thaw samples analyzed in 2021, there was good agreement between ELISA and LightDeck version 2 (n = 152; R2 = 0.868), but the LightDeck slightly underestimated microcystins (slope of 0.862). However, we found poor relationships between LightDeck version 2 and ELISA in 2022 (n = 49, slopes 0.60 to 1.6; R2 < 0.6) and LightDeck version 1 (slope = 1.77 but also a high number of less than quantifiable concentrations). After the quantification issues are resolved, combining the LightDeck system with an already-proven rapid lysis method (such as microwaving) will allow beach managers and water treatment operators to make quicker, well-informed decisions.


Subject(s)
Biosensing Techniques , Cyanobacteria , Microcystins/analysis , Microcystins/metabolism , Harmful Algal Bloom , Lakes/analysis
10.
Harmful Algae ; 129: 102531, 2023 11.
Article in English | MEDLINE | ID: mdl-37951605

ABSTRACT

For Microcystis aeruginosa PCC 7806, temperature decreases from 26 °C to 19 °C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, reactive oxygen species damage, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19 °C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.


Subject(s)
Microcystins , Microcystis , Microcystins/metabolism , Cold Temperature , Reactive Oxygen Species/metabolism , Acclimatization
11.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693631

ABSTRACT

For Microcystis aeruginosa PCC 7806, temperature decreases from 26° C to 19° C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19° C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.

12.
Front Microbiol ; 14: 1197394, 2023.
Article in English | MEDLINE | ID: mdl-37455723

ABSTRACT

Grand Lake St. Marys (GLSM) is a popular recreational lake located in western Ohio, United States, generating nearly $150 million in annual revenue. However, recurring algal blooms dominated by Planktothrix agardhii, which can produce harmful microcystin toxins, have raised concerns about water safety and negatively impacted the local economy. Planktothrix agardhii is host to a number of parasites and pathogens, including an obligate fungal parasite in the Chytridiomycota (chytrids). In this study, we investigated the potential of these chytrid (Rhizophydium sp.) to infect P. agardhii blooms in the environment by modifying certain environmental conditions thought to limit infection prevalence in the wild. With a focus on temperature and water mixing, mesocosms were designed to either increase or decrease water flow compared to the control (water outside the mesocosm). In the control and water circulation mesocosms, infections were found infrequently and were found on less than 0.75% of the Planktothrix population. On the other hand, by decreasing the water flow to stagnation, chytrid infections were more frequent (found in nearly 3x as many samples) and more prevalent, reaching a maximum infection rate of 4.12%. In addition, qPCR coupled with 16S-18S sequencing was utilized to confirm the genetic presence of both host and parasite, as well as to better understand the effect of water circulation on the community composition. Statistical analysis of the data confirmed that chytrid infection was dependent on water temperature, with infections predominantly occurring between 19°C and 23°C. Additionally, water turbulence can significantly reduce the infectivity of chytrids, as infections were mostly found in stagnant mesocosms. Further, decreasing the water circulation promoted the growth of the cyanobacterial population, while increasing water agitation promoted the growth of green algae (Chlorophyta). This study starts to explore the environmental factors that affect chytrid pathogenesis which can provide valuable insights into controlling measures to reduce the prevalence of harmful algal blooms and improve water quality in GLSM and similarly affected waterbodies.

13.
Front Microbiol ; 14: 1199641, 2023.
Article in English | MEDLINE | ID: mdl-37455749

ABSTRACT

Introduction: Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii, with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results: Putative Planktothrix-specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015-2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion: This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events.

14.
Harmful Algae ; 122: 102381, 2023 02.
Article in English | MEDLINE | ID: mdl-36754455

ABSTRACT

Cyanobacteria have a great diversity of natural enemies, such as herbivores and pathogens, including fungal pathogens within the Chytridiomycota (chytrids). While these pathogens have been previously described on a select number of cyanobacterial hosts and are suspected to play a significant ecological role, little is understood about species interactions and how competition between parasites can affect epidemic development and bloom formation. Here, three Planktothrix agardhii isolates from Sandusky Bay, Lake Erie (OH, USA) were challenged in monoculture and polyculture against infection by three isolates (C1, C2, C10) of their obligate chytrid fungal pathogen, Rhizophydiales sp. The chytrid isolates were inoculated as single isolates or a mixture of up to three different isolates. In monoculture, host isolates were characterized as highly susceptible (P. agardhii 1030), moderately susceptible (P. agardhii 1808) or mostly resistant (P. agardhii 1801). Co-infection of chytrid isolates on the highly susceptible host isolate had an additive effect on chytrid prevalence, leading to a culture crash where 2 or 3 chytrid isolates were present. Co-infection of chytrid isolates on the moderately susceptible and mostly resistant isolates had no effect on chytrid infection outcome or prevalence compared to infection with a single isolate. In polyculture, the effect on host growth was most significant in the single chytrid isolate treatment, which was attenuated with the addition of mixed chytrid treatments. Genetic analysis of the resulting population after the experimental period showed a tendency for the chytrid isolate C1 and P. agardhii 1801 to dominate in mixed population samples. Two different interspecific interactions seem to be in play; varied parasite infection strategies allow for the amplification of infection prevalence due to mixed chytrids in a susceptible monoculture, or competition allows for the dominance of a single chytrid isolate in monoculture and the reduction of infection prevalence in a host polyculture. This work thus highlights how interactions between chytrid infections can change the course of epidemic development and harmful algal bloom formation.


Subject(s)
Chytridiomycota , Coinfection , Cyanobacteria , Harmful Algal Bloom , Cyanobacteria/genetics , Lakes/microbiology
15.
Environ Microbiol Rep ; 15(1): 3-12, 2023 02.
Article in English | MEDLINE | ID: mdl-36096485

ABSTRACT

Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.


Subject(s)
Cyanobacteria , Ecosystem , Humans , Climate Change , Cyanobacteria/physiology , Fresh Water/microbiology , Photosynthesis
16.
PLoS One ; 17(8): e0273454, 2022.
Article in English | MEDLINE | ID: mdl-35998200

ABSTRACT

Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P. agardhii isolates were obtained from early (June) blooms via single filament isolation; eight have been characterized from 2016, and 12 additional isolates have been characterized from 2018 for a total of 20 new cultures. These novel isolates were processed for genomic sequencing, where reads were used to generate scaffolds and contigs which were annotated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment to generate phylogenetic trees and comparison of genetic rearrangements between isolates. Nitrogen acquisition and metabolism was compared across isolates. Secondary metabolite production was genetically explored including microcystins, two types of aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides. Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences across all isolates and against the known Planktothrix-specific cyanophage, PaV-LD. Overall, the uniqueness of each genome from Planktothrix blooms sampled from the same site and at similar times belies the unexplored diversity of this genus.


Subject(s)
Cyanobacteria , Lakes , Cyanobacteria/metabolism , Genome, Bacterial , Genomics , Lakes/microbiology , Microcystins/genetics , Phylogeny , Planktothrix
17.
Microbiol Resour Announc ; 11(7): e0035122, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35652650

ABSTRACT

Previous reports suggest planktonic and under-ice winter microbial communities in Lake Erie are dominated by diatoms. Here, we report the assembled metatranscriptomes of 79 Lake Erie surface water microbial communities spanning both the winter (28 samples) and spring (51 samples) months over spatial, temporal, and climatic gradients in 2019 through 2020.

18.
Front Microbiol ; 13: 809989, 2022.
Article in English | MEDLINE | ID: mdl-35369463

ABSTRACT

The environmental conditions experienced by microbial communities are rarely fully simulated in the laboratory. Researchers use experimental containers ("bottles"), where natural samples can be manipulated and evaluated. However, container-based methods are subject to "bottle effects": changes that occur when enclosing the plankton community that are often times unexplained by standard measures like pigment and nutrient concentrations. We noted variability in a short-term, nutrient amendment experiment during a 2019 Lake Erie, Microcystis spp. bloom. We observed changes in heterotrophic bacteria activity (transcription) on a time-frame consistent with a response to experimental changes in nutrient availability, demonstrating how the often overlooked microbiome of cyanobacterial blooms can be altered. Samples processed at the time of collection (T0) contained abundant transcripts from Bacteroidetes, which reduced in abundance during incubation in all bottles, including controls. Significant biological variability in the expression of Microcystis-infecting phage was observed between replicates, with phosphate-amended treatments showing a 10-fold variation. The expression patterns of Microcystis-infecting phage were significantly correlated with ∼35% of Microcystis-specific functional genes and ∼45% of the cellular-metabolites measured across the entire microbial community, suggesting phage activity not only influenced Microcystis dynamics, but the biochemistry of the microbiome. Our observations demonstrate how natural heterogeneity among replicates can be harnessed to provide further insight on virus and host ecology.

19.
J Plankton Res ; 43(5): 658-672, 2021.
Article in English | MEDLINE | ID: mdl-34588922

ABSTRACT

Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17-31°C), conductivity (0.226-1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7-12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.

SELECTION OF CITATIONS
SEARCH DETAIL