Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836264

ABSTRACT

Lithium adsorption on high-surface-area porous carbon (PC) nanomaterials provides superior electrochemical energy storage performance dominated by capacitive behavior. In this study, we demonstrate the influence of structural defects in the graphene lattice on the bonding character of adsorbed lithium. Thermally evaporated lithium was deposited in vacuum on the surface of as-grown graphene-like PC and PC annealed at 400 °C. Changes in the electronic states of carbon were studied experimentally using surface-sensitive X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NEXAFS data in combination with density functional theory calculations revealed the dative interactions between lithium sp2 hybridized states and carbon π*-type orbitals. Corrugated defective layers of graphene provide lithium with new bonding configurations, shorter distances, and stronger orbital overlapping, resulting in significant charge transfer between carbon and lithium. PC annealing heals defects, and as a result, the amount of lithium on the surface decreases. This conclusion was supported by electrochemical studies of as-grown and annealed PC in lithium-ion batteries. The former nanomaterial showed higher capacity values at all applied current densities. The results demonstrate that the lithium storage in carbon-based electrodes can be improved by introducing defects into the graphene layers.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570500

ABSTRACT

Molybdenum disulfide (MoS2) is the second two-dimensional material after graphene that received a lot of attention from the research community. Strong S-Mo-S bonds make the sandwich-like layer mechanically and chemically stable, while the abundance of precursors and several developed synthesis methods allow obtaining various MoS2 architectures, including those in combinations with a carbon component. Doping of MoS2 with heteroatom substituents can occur by replacing Mo and S with other cations and anions. This creates active sites on the basal plane, which is important for the adsorption of reactive species. Adsorption is a key step in the gas detection and electrochemical energy storage processes discussed in this review. The literature data were analyzed in the light of the influence of a substitutional heteroatom on the interaction of MoS2 with gas molecules and electrolyte ions. Theory predicts that the binding energy of molecules to a MoS2 surface increases in the presence of heteroatoms, and experiments showed that such surfaces are more sensitive to certain gases. The best electrochemical performance of MoS2-based nanomaterials is usually achieved by including foreign metals. Heteroatoms improve the electrical conductivity of MoS2, which is a semiconductor in a thermodynamically stable hexagonal form, increase the distance between layers, and cause lattice deformation and electronic density redistribution. An analysis of literature data showed that co-doping with various elements is most attractive for improving the performance of MoS2 in sensor and electrochemical applications. This is the first comprehensive review on the influence of foreign elements inserted into MoS2 lattice on the performance of a nanomaterial in chemiresistive gas sensors, lithium-, sodium-, and potassium-ion batteries, and supercapacitors. The collected data can serve as a guide to determine which elements and combinations of elements can be used to obtain a MoS2-based nanomaterial with the properties required for a particular application.

3.
Phys Chem Chem Phys ; 25(29): 19976-19985, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37461330

ABSTRACT

The effect of humidity on the electrical conductivity of single-walled carbon nanotube (SWCNT) films depends on both the conductivity of individual nanotubes and the electrical contacts between them. Here, we study these factors by comparing the sensor response of nanotubes with fluorine- and nitrogen-containing groups attached to the sidewalls. Experiments carried out in a wide range of relative humidity (RH) at room and elevated temperatures showed that the conductivity of non-functionalized SWCNTs and contacts between them decreases upon the adsorption of water molecules. Covalent fluorination reduces the conductivity of SWCNTs and significantly increases the sensitivity of the film to low concentrations of water vapor. The response at high RH decreases due to the large number of water molecules adsorbed on the conductive regions of the nanotubes. As a result of substitutional reactions of fluorinated SWCNTs with dimethylformamide and ethylenediamine, nitrogen-containing groups are added, the amount of which, however, is much less than the amount of fluorine. This modification of the SWCNTs improves intertube contacts in the film and increases the surface area for water adsorption. Our results show that an increase in the number of functional groups on the SWCNT surface enhances the sensitivity of the sensor to low water concentrations and worsens the response at high RH. SWCNTs modified with ethylenediamine have the highest sensitivity over the entire range of RH.

4.
Materials (Basel) ; 16(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837276

ABSTRACT

Diamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films. Atomic force microscopy reveals a uniform coating of titanium and the formation of flattened molybdenum nanoparticles. A thin titanium film is completely oxidized upon contact with air and passes from the oxidized state to the carbide state upon annealing in an ultrahigh vacuum at 800 °C. Molybdenum interacts with the (111) diamond surface already at 500 °C, which leads to the carbidization of its nanoparticles and catalytic graphitization of the diamond surface. This process is much slower on the (100) diamond surface; sp2-hybridized carbon is formed on the diamond and the top of molybdenum carbide nanoparticles, only when the annealing temperature is raised to 800 °C. The conductivity of the resulting sample is improved when compared to the Ti-coated diamond substrates and the Mo-coated (111) substrate annealed at 800 °C. The presented results could be useful for the development of graphene-on-diamond electronics.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770506

ABSTRACT

Ni supported on N-doped carbon is rarely studied in traditional catalytic reactions. To fill this gap, we compared the structure of 1 and 6 wt% Ni species on porous N-free and N-doped carbon and their efficiency in hydrogen generation from gaseous formic acid. On the N-free carbon support, Ni formed nanoparticles with a mean size of 3.2 nm. N-doped carbon support contained Ni single-atoms stabilized by four pyridinic N atoms (N4-site) and sub-nanosized Ni clusters. Density functional theory calculations confirmed the clustering of Ni when the N4-sites were fully occupied. Kinetic studies revealed the same specific Ni mass-based reaction rate for single-atoms and clusters. The N-doped catalyst with 6 wt% of Ni showed higher selectivity in hydrogen production and did not lose activity as compared to the N-free 6 wt% Ni catalyst. The presented results can be used to develop stable Ni catalysts supported on N-doped carbon for various reactions.

6.
Nanotechnology ; 34(18)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36716476

ABSTRACT

We propose an original technique for the grating metasurfaces fabrication by low-power ultraviolet laser treatment of fluorinated graphene (FG) films with the focus on terahertz applications. The laser treatment reduces dielectric FG to its conductive counterparts, increasing DC conductivity to 170 S·m-1for treated areas. The electromagnetic response of the grating metasurfaces studied by THz time-domain spectroscopy in the 100 GHz-1 THz frequency range demonstrates enhanced resonant transmittance through metasurfaces. The intensity and position of transmittance peak could be tuned by changing the metasurface geometry, i.e. the period of the structure and width of the reduced and unreduced areas. In particular, the decrease of the reduced FG area width from 400 to 170µm leads to the shift of the resonance peak from 0.45 THz to the higher frequencies, 0.85 THz. Theoretical description based on the multipole theory supported by finite element numerical calculations confirms the excitation of the dark state in the metasurface unit cells comprising reduced and unreduced FG areas at resonance frequency determined by the structure geometrical features. Fabricated metasurfaces have been proved to be efficient narrowband polarizers being rotated by 50° about the incident THz field vector.

7.
Phys Chem Chem Phys ; 25(3): 2084-2089, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36562266

ABSTRACT

We report the fabrication of high-performance NO2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO2 molecules at sub-ppm level with a sensitivity of 0.15 ppm-1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (ΔHa < 0.1 eV) for NO2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring.

8.
Materials (Basel) ; 15(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36233981

ABSTRACT

Arrays of aligned carbon nanotubes (CNTs) are anisotropic nanomaterials possessing a high length-to-diameter aspect ratio, channels passing through the array, and mechanical strength along with flexibility. The arrays are produced in one step using aerosol-assisted catalytic chemical vapor deposition (CCVD), where a mixture of carbon and metal sources is fed into the hot zone of the reactor. Metal nanoparticles catalyze the growth of CNTs and, during synthesis, are partially captured into the internal cavity of CNTs. In this work, we considered various stages of multi-walled CNT (MWCNT) growth on silicon substrates from a ferrocene-toluene mixture and estimated the amount of iron in the array. The study showed that although the mixture of precursors supplies evenly to the reactor, the iron content in the upper part of the array is lower and increases toward the substrate. The size of carbon-encapsulated iron-based nanoparticles is 20-30 nm, and, according to X-ray diffraction data, most of them are iron carbide Fe3C. The reasons for the gradient distribution of iron nanoparticles in MWCNT arrays were considered, and the possibilities of controlling their distribution were evaluated.

9.
Inorg Chem ; 61(25): 9605-9614, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696678

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are a perfect host for the formation of one-dimensional phosphorus structures and to obtain hybrid materials with a large P-C ratio. This work presents a procedure for high-yield phosphorus filling of commercial Tuball SWCNTs and efficient removal of phosphorus deposits from the external nanotube surface. We probed white and red phosphorus as precursors, varied the synthesis temperature and the ampoule shape, and tested three solvents for sample purification. High-resolution transmission electron microscopy and Raman spectroscopy indicated crystallization of interior phosphorus in a form resembling fibrous red phosphorus. An aqueous sodium hydroxide solution allowed removing the majority of external phosphorus particles. Thermogravimetric analysis of the product determined ∼23 wt % (∼10 atom %) of phosphorus, and the X-ray photoelectron spectroscopy (XPS) data showed that ca. 80% of it is in the form of elemental phosphorus. Externally purified SWCNTs filled with phosphorus were used to study the interaction between the components. Raman spectroscopy and core-level XPS revealed p-type SWCNT doping. Valence-band XPS data and density functional theory calculations confirmed the transfer of the SWCNT electron density to the encapsulated phosphorus.

10.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35055249

ABSTRACT

Fluorinated graphitic layers with good mechanical and chemical stability, polar C-F bonds, and tunable bandgap are attractive for a variety of applications. In this work, we investigated the photolysis of fluorinated graphites with interlayer embedded acetonitrile, which is the simplest representative of the acetonitrile-containing photosensitizing family. The samples were continuously illuminated in situ with high-brightness non-monochromatized synchrotron radiation. Changes in the compositions of the samples were monitored using X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS N K-edge spectra showed that acetonitrile dissociates to form HCN and N2 molecules after exposure to the white beam for 2 s, and the latter molecules completely disappear after exposure for 200 s. The original composition of fluorinated matrices CF0.3 and CF0.5 is changed to CF0.10 and GF0.17, respectively. The highly fluorinated layers lose fluorine atoms together with carbon neighbors, creating atomic vacancies. The edges of vacancies are terminated with the nitrogen atoms and form pyridinic and pyrrolic units. Our in situ studies show that the photolysis products of acetonitrile depend on the photon irradiation duration and composition of the initial CFx matrix. The obtained results evaluate the radiation damage of the acetonitrile-intercalated fluorinated graphites and the opportunities to synthesize nitrogen-doped graphene materials.

11.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616064

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) with their high surface area, electrical conductivity, mechanical strength and elasticity are an ideal component for the development of composite electrode materials for batteries. Red phosphorus has a very high theoretical capacity with respect to lithium, but has poor conductivity and expends considerably as a result of the reaction with lithium ions. In this work, we compare the electrochemical performance of commercial SWCNTs with red phosphorus deposited on the outer surface of nanotubes and/or encapsulated in internal channels of nanotubes in lithium-ion batteries. External phosphorus, condensed from vapors, is easily oxidized upon contact with the environment and only the un-oxidized phosphorus cores participate in electrochemical reactions. The support of the SWCNT network ensures a stable long-term cycling for these phosphorus particles. The tubular space inside the SWCNTs stimulate the formation of chain phosphorus structures. The chains reversibly interact with lithium ions and provide a specific capacity of 1545 mAh·g-1 (calculated on the mass of phosphorus in the sample) at a current density of 0.1 A·g-1. As compared to the sample containing external phosphorus, SWCNTs with encapsulated phosphorus demonstrate higher reaction rates and a slight loss of initial capacity (~7%) on the 1000th cycle at 5 A·g-1.

12.
Chem Commun (Camb) ; 57(70): 8778-8781, 2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34378581

ABSTRACT

Herein, ZIF-8 pre-grown on carbon cloth (CC) leads to preferential and homogenizing Zn deposition to accelerate Zn-ion diffusion. CC with uniform Zn deposits induced from ZIF-8 promotes rapid Zn plating, resulting in balanced kinetics between electrodes. The as-assembled ZICs show a high specific capacitance of 302 F g-1 at 0.5 A g-1, an outstanding rate performance of 188 F g-1 at 20 A g-1 and 100% capacitance retention after 10000 cycles.

13.
Materials (Basel) ; 14(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198489

ABSTRACT

The patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO2 laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power. Laser treatment does not destroy the alignment of MWCNTs while removing their poorly ordered external layers. The products of oxidative destruction of these layers deposit on the surfaces of newly produced arrays. The oxygen groups resulting from the CO2 laser treatment improve the wettability of nanotube arrays with an epoxy resin. We show that the patterned MWCNT arrays absorb the THz radiation more strongly than the as-synthesized arrays. Moreover, the pattern influences the frequency behavior of the absorbance.

14.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925739

ABSTRACT

Robust electrode materials without the addition of binders allow increasing efficiency of electrical storage devices. We demonstrate the fabrication of binder-free electrodes from modified single-walled carbon nanotubes (SWCNTs) for electrochemical double-layer capacitors (EDLCs). Modification of SWCNTs included a sonication in 1,2-dichlorobenzene and/or fluorination with gaseous BrF3 at room temperature. The sonication caused the shortening of SWCNTs and the splitting of their bundles. As a result, the film prepared from such SWCNTs had a higher density and attached a larger amount of fluorine as compared to the film from non-sonicated SWCNTs. In EDLCs with 1M H2SO4 electrolyte, the fluorinated films were gradually defluorinated, which lead to an increase of the specific capacitance by 2.5-4 times in comparison with the initial values. Although the highest gravimetric capacitance (29 F g-1 at 100 mV s-1) was observed for the binder-free film from non-modified SWCNT, the fluorinated film from the sonicated SWCNTs had an enhanced volumetric capacitance (44 F cm-3 at 100 mV s-1). Initial SWCNT films and defluorinated films showed stable work in EDLCs during several thousand cycles.

15.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924400

ABSTRACT

Carbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of the synthesis and subsequent oxidation in air. It is shown that the addition of toluene in the reactor during the arcing allows obtaining CNHs functionalized with -CHx groups. Heating of CNHs in air at 400 °C leads to substitution of -CHx groups for oxygen-containing groups. Moreover, the CNH endcaps are opened at 500 °C, and as a result, the specific surface area of CNHs increases 4 times. Aqueous suspensions with a concentration of oxidized CNHs of 100 µg/mL are stable for 8 months.

16.
Nanoscale ; 13(2): 1206-1212, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33404033

ABSTRACT

In this paper we present a successful approach for the generation of partially fluorinated graphene structures. A computationally simple model optimized on a large density functional theory dataset quickly and precisely predicts experimentally observed structures. From the analysis of the structural diversity of fluorinated graphene in a wide range of synthesis temperatures, the general structural patterns are identified and the conditions for their achievement are determined. In addition, to facilitate further studies of fluorinated graphene, we present a ready-to-use GenCF code that implements the described structure generator.

17.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138180

ABSTRACT

Highly porous nitrogen-doped carbon nanomaterials have distinct advantages in energy storage and conversion technologies. In the present work, hydrothermal treatments in water or ammonia solution were used for modification of mesoporous nitrogen-doped graphitic carbon, synthesized by deposition of acetonitrile vapors on the pyrolysis products of calcium tartrate. Morphology, composition, and textural characteristics of the original and activated materials were studied by transmission electron microscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, infrared spectroscopy, and nitrogen gas adsorption method. Both treatments resulted in a slight increase in specific surface area and volume of micropores and small mesopores due to the etching of carbon surface. Compared to the solely aqueous medium, activation with ammonia led to stronger destruction of the graphitic shells, the formation of larger micropores (1.4 nm vs 0.6 nm), a higher concentration of carbonyl groups, and the addition of nitrogen-containing groups. The tests of nitrogen-doped carbon materials as electrodes in 1M H2SO4 electrolyte and sodium-ion batteries showed improvement of electrochemical performance after hydrothermal treatments especially when ammonia was used. The activation method developed in this work is hopeful to open up a new route of designing porous nitrogen-doped carbon materials for electrochemical applications.

18.
Materials (Basel) ; 13(19)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020425

ABSTRACT

Vertically aligned carbon nanotube (CNT) arrays show potential for the development of planar low-voltage emission cathodes. The characteristics of cathodes can be improved by modifying their surface, e.g., by hydrogen plasma treatment, as was performed in this work. The surface of multi-walled CNT arrays grown on silicon substrates from toluene and ferrocene using catalytic chemical vapor deposition was treated in a high-pressure (~104 Pa) microwave reactor. The structure, composition, and current-voltage characteristics of the arrays were studied before and after hydrogen plasma treatment at various power values and durations. CNT tips were destroyed and catalytic iron was released from the CNT channels. The etching rate was influenced by iron particles that formed on the array surface. The lower emission threshold in the plasma-treated arrays than in the initial sample is explained by the amplification factor of the local electric field increasing due to graphene structures of unfolded nanotube layers that formed at the CNT tips.

19.
Materials (Basel) ; 13(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796571

ABSTRACT

The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature.

20.
Nanomaterials (Basel) ; 10(5)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344811

ABSTRACT

Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor-acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...