Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845489

ABSTRACT

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Subject(s)
T-Lymphocyte Subsets , Transcriptome , Child , Humans , Aged , Aging/genetics , Epitopes/metabolism , Single-Cell Analysis
3.
Nat Commun ; 14(1): 3417, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296110

ABSTRACT

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals. Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature. These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2 , Blood Proteins , Disease Progression , Inflammation
4.
Nat Commun ; 14(1): 1684, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973282

ABSTRACT

Longitudinal bulk and single-cell omics data is increasingly generated for biological and clinical research but is challenging to analyze due to its many intrinsic types of variations. We present PALMO ( https://github.com/aifimmunology/PALMO ), a platform that contains five analytical modules to examine longitudinal bulk and single-cell multi-omics data from multiple perspectives, including decomposition of sources of variations within the data, collection of stable or variable features across timepoints and participants, identification of up- or down-regulated markers across timepoints of individual participants, and investigation on samples of same participants for possible outlier events. We have tested PALMO performance on a complex longitudinal multi-omics dataset of five data modalities on the same samples and six external datasets of diverse background. Both PALMO and our longitudinal multi-omics dataset can be valuable resources to the scientific community.


Subject(s)
Multiomics , Humans , Software
5.
STAR Protoc ; 2(4): 100900, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34806044

ABSTRACT

Deep immune profiling is essential for understanding the human immune system in health and disease. Successful biological interpretation of this data requires consistent laboratory processing with minimal batch-to-batch variation. Here, we detail a robust pipeline for the profiling of human peripheral blood mononuclear cells by both high-dimensional flow cytometry and single-cell RNA-seq. These protocols reduce batch effects, generate reproducible data, and increase throughput. For complete details on the use and execution of this protocol, please refer to Savage et al. (2021).


Subject(s)
Flow Cytometry/methods , Leukocytes, Mononuclear , Monitoring, Immunologic/methods , Single-Cell Analysis/methods , Computational Biology , Humans , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Sequence Analysis, RNA
6.
iScience ; 24(5): 102404, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113805

ABSTRACT

Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states.

7.
bioRxiv ; 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34075380

ABSTRACT

SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

8.
Elife ; 102021 04 09.
Article in English | MEDLINE | ID: mdl-33835024

ABSTRACT

Single-cell measurements of cellular characteristics have been instrumental in understanding the heterogeneous pathways that drive differentiation, cellular responses to signals, and human disease. Recent advances have allowed paired capture of protein abundance and transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-based multiomics platform to develop a trimodal assay that simultaneously measures transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined cell types.


Subject(s)
Chromatin/metabolism , Epigenomics/methods , Epitopes/metabolism , Gene Expression Regulation , Transcriptome , Humans , Single-Cell Analysis
9.
PLoS One ; 8(3): e58575, 2013.
Article in English | MEDLINE | ID: mdl-23536797

ABSTRACT

Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7-14 days resulted in a 25-50% lowering of plasma glucose coupled with a 10-30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.


Subject(s)
Fibroblast Growth Factors/pharmacology , Recombinant Proteins , 3T3 Cells , Amino Acid Substitution , Animals , Cell Line , Drug Design , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/genetics , Gene Expression , Genetic Variation , Hep G2 Cells , Humans , Klotho Proteins , Male , Membrane Proteins/metabolism , Mice , Models, Molecular , Pichia/genetics , Pichia/metabolism , Protein Conformation , Protein Stability , Temperature
10.
Clin Lung Cancer ; 6(3): 184-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15555220

ABSTRACT

Current treatments of non-small-cell lung cancer (NSCLC) are inadequate and new therapies are being developed that target specific cellular signaling proteins associated with tumor growth. One potential target is protein kinase C (PKC)-alpha, a signaling molecule with an important role in cell regulation and proliferation. The present study examines the expression levels of PKC-alpha in NSCLC to better understand the distribution of PKC-alpha in NSCLC. We analyzed tumor specimens from an independent tumor tissue bank to determine PKC-alpha protein and messenger RNA gene expression in NSCLC. In addition, we used publicly available gene expression array data to further understand PKC-a-associated gene expression profiles in NSCLC. We found that PKC-alpha is highly expressed in < or = 20% of patients with NSCLC. We also found that PKC-alpha was preferentially expressed in adenocarcinoma compared with squamous cell carcinoma of the lung.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Profiling , Lung Neoplasms/genetics , Protein Kinase C/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Protein Kinase C-alpha , RNA, Messenger/metabolism
11.
Oncology ; 67(1): 1-10, 2004.
Article in English | MEDLINE | ID: mdl-15459489

ABSTRACT

In recent years research has focused on the development of specific, targeted drugs to treat cancer. One approach has been to block intracellular signaling proteins, such as protein kinase C alpha (PKC-alpha). To help support the rationale for clinical studies of a PKC-alpha-targeted therapy in breast and ovarian cancers, we reviewed publications studying PKC-alpha expression in these tumors. Since these investigations were mostly performed in cell lines, we supplemented this review with some preliminary findings from studies examining PKC-alpha expression in tumor tissue biopsies obtained from patients with breast and ovarian cancer. Based on the reviewed publications using representative cell lines and our preliminary findings on tumor tissue of patients with breast cancer, we infer that PKC-alpha levels may especially be increased in breast cancer patients with low or negative estrogen receptor (ER) levels. Thus, clinical studies determining efficacy of selective or specific inhibitors of PKC-alpha should include determination of ER status in order to help answer whether blocking PKC-alpha in patients with low or absent ER can result in clinical benefit.


Subject(s)
Breast Neoplasms/enzymology , Ovarian Neoplasms/enzymology , Protein Kinase C/metabolism , Antineoplastic Agents/therapeutic use , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Enzyme Inhibitors/therapeutic use , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotides, Antisense/therapeutic use , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Phosphorothioate Oligonucleotides , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C-alpha , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...