Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sex Dev ; 7(5): 223-34, 2013.
Article in English | MEDLINE | ID: mdl-23774508

ABSTRACT

Androgen receptor (AR) mutations in androgen insensitivity syndrome (AIS) are associated with a variety of clinical phenotypes. The aim of the present study was to compare the molecular properties and potential pathogenic nature of 8 novel and 3 recurrent AR variants with a broad variety of functional assays. Eleven AR variants (p.Cys177Gly, p.Arg609Met, p.Asp691del, p.Leu701Phe, p.Leu723Phe, p.Ser741Tyr, p.Ala766Ser, p.Arg775Leu, p.Phe814Cys, p.Lys913X, p.Ile915Thr) were analyzed for hormone binding, transcriptional activation, cofactor binding, translocation to the nucleus, nuclear dynamics, and structural conformation. Ligand-binding domain variants with low to intermediate transcriptional activation displayed aberrant Kd values for hormone binding and decreased nuclear translocation. Transcriptional activation data, FxxFF-like peptide binding and DNA binding correlated well for all variants, except for p.Arg609Met, p.Leu723Phe and p.Arg775Leu, which displayed a relatively higher peptide binding activity. Variants p.Cys177Gly, p.Asp691del, p.Ala766Ser, p.Phe814Cys, and p.Ile915Thr had intermediate or wild type values in all assays and showed a predominantly nuclear localization in living cells. All transcriptionally inactive variants (p.Arg609Met, p.Leu701Phe, p.Ser741Tyr, p.Arg775Leu, p.Lys913X) were unable to bind to DNA and were associated with complete AIS. Three variants (p.Asp691del, p.Arg775Leu, p.Ile915Thr) still displayed significant functional activities in in vitro assays, although the clinical phenotype was associated with complete AIS. The data show that molecular phenotyping based on 5 different functional assays matched in most (70%) but not all cases.


Subject(s)
Androgen-Insensitivity Syndrome/genetics , Receptors, Androgen/genetics , Humans , Male , Mutation
3.
Ned Tijdschr Geneeskd ; 148(39): 1912-7, 2004 Sep 25.
Article in Dutch | MEDLINE | ID: mdl-15495988

ABSTRACT

Upon ingestion of food, the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are synthesised and secreted by specialised gut cells. GLP-1 is also produced in the pancreatic islets and the central nervous system. Both incretins bind to specific G-protein-coupled receptors that are distributed throughout the body. Incretins potentiate meal-induced insulin production and secretion by the beta-cells and lower the blood glucose level in the presence of hyperglycaemia. GLP-1 and GIP stimulate beta-cell proliferation and differentiation, whereas GLP-1 only inhibits gastric emptying and glucagon secretion, reduces food intake and improves insulin sensitivity. Insulin-resistant and type-2 diabetic patients have an impaired incretin response to meal ingestion. However, the insulinotropic action of exogenous GLP-1, but not that of GIP, is preserved in these subjects. After parenteral administration, GLP-1 has an extremely short duration of action because it is rapidly degraded by the ubiquitous enzyme dipeptidyl peptidase IV (DPPIV). To prolong GLP-1 bioactivity, DPPIV-resistant GLP-1 analogues, DPPIV inhibitors and exenatide, a long-acting synthetic GLP-1 receptor agonist derived from the Gila monster hormone exendin-4, have been developed. Enhancement of incretin action seems a rational and promising option for the treatment of type-2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Enzyme Inhibitors/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon/therapeutic use , Peptide Fragments/therapeutic use , Protein Precursors/therapeutic use , Gastric Inhibitory Polypeptide/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1 , Humans , Insulin Resistance/physiology , Peptide Fragments/metabolism , Protein Precursors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...