Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 604(7907): 635-642, 2022 04.
Article in English | MEDLINE | ID: mdl-35478233

ABSTRACT

The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data 'findable and AI ready' (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science.


Subject(s)
Artificial Intelligence , Data Science
2.
Open Res Eur ; 2: 51, 2022.
Article in English | MEDLINE | ID: mdl-37645328

ABSTRACT

preCICE is a free/open-source coupling library. It enables creating partitioned multi-physics simulations by gluing together separate software packages. This paper summarizes the development efforts in preCICE of the past five years. During this time span, we have turned the software from a working prototype -- sophisticated numerical coupling methods and scalability on ten thousands of compute cores -- to a sustainable and user-friendly software project with a steadily-growing community. Today, we know through forum discussions, conferences, workshops, and publications of more than 100 research groups using preCICE. We cover the fundamentals of the software alongside a performance and accuracy analysis of different data mapping methods. Afterwards, we describe ready-to-use integration with widely-used external simulation software packages, tests, and continuous integration from unit to system level, and community building measures, drawing an overview of the current preCICE ecosystem.

3.
Comput Med Imaging Graph ; 45: 26-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26241162

ABSTRACT

Mitral valve (MV) diseases are among the most common types of heart diseases, while heart diseases are the most common cause of death worldwide. MV repair surgery is connected to higher survival rates and fewer complications than the total replacement of the MV, but MV repair requires extensive patient-specific therapy planning. The simulation of MV repair with a patient-specific model could help to optimize surgery results and make MV repair available to more patients. However, current patient-specific simulations are difficult to transfer to clinical application because of time-constraints or prohibitive requirements on the resolution of the image data. As one possible solution to the problem of patient-specific MV modeling, we present a mass-spring MV model based on 3D transesophageal echocardiographic (TEE) images already routinely acquired for MV repair therapy planning. Our novel approach to the rest-length estimation of springs allows us to model the global support of the MV leaflets through the chordae tendinae without the need for high-resolution image data. The model is used to simulate MV annuloplasty for five patients undergoing MV repair, and the simulated results are compared to post-surgical TEE images. The comparison shows that our model is able to provide a qualitative estimate of annuloplasty surgery. In addition, the data suggests that the model might also be applied to simulating the implantation of artificial chordae.


Subject(s)
Echocardiography, Three-Dimensional/methods , Mitral Valve Annuloplasty/methods , Mitral Valve/physiopathology , Mitral Valve/surgery , Models, Cardiovascular , Patient-Specific Modeling , Chordae Tendineae , Computer Simulation , Elastic Modulus , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Mitral Valve/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity , Viscosity
4.
J Chem Theory Comput ; 10(10): 4455-64, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-26588142

ABSTRACT

The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer.

5.
Water Res ; 36(2): 370-93, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11827344

ABSTRACT

Application of novel analytical and investigative methods such as fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM), microelectrodes and advanced numerical simulation has led to new insights into micro- and macroscopic processes in bioreactors. However, the question is still open whether or not these new findings and the subsequent gain of knowledge are of significant practical relevance and if so, where and how. To find suitable answers it is necessary for engineers to know what can be expected by applying these modern analytical tools. Similarly, scientists could benefit significantly from an intensive dialogue with engineers in order to find out about practical problems and conditions existing in wastewater treatment systems. In this paper, an attempt is made to help bridge the gap between science and engineering in biological wastewater treatment. We provide an overview of recently developed methods in microbiology and in mathematical modeling and numerical simulation. A questionnaire is presented which may help generate a platform from which further technical and scientific developments can be accomplished. Both the paper and the questionnaire are aimed at encouraging scientists and engineers to enter into an intensive, mutually beneficial dialogue.


Subject(s)
Bioreactors , DNA Fingerprinting , Models, Theoretical , Water Purification/methods , DNA, Bacterial/analysis , Engineering , In Situ Hybridization, Fluorescence , Microelectrodes , Microscopy, Confocal , Water Microbiology , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...