Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Nature ; 585(7824): 293-297, 2020 09.
Article in English | MEDLINE | ID: mdl-32494016

ABSTRACT

Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


Subject(s)
Cyclins/deficiency , Cyclins/metabolism , Proteolysis/drug effects , Purines/chemistry , Purines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Cyclins/chemistry , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Purines/toxicity , Pyridines/toxicity , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitination/drug effects
2.
Science ; 368(6498): 1460-1465, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32327602

ABSTRACT

Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo-electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.


Subject(s)
Gene Expression Regulation , Nucleosomes/chemistry , Octamer Transcription Factor-3/chemistry , SOXB1 Transcription Factors/chemistry , Animals , Cryoelectron Microscopy , DNA/chemistry , Histones/chemistry , Mice , Mouse Embryonic Stem Cells/metabolism
3.
Biochem J ; 476(21): 3369-3383, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31696211

ABSTRACT

4-hydroxy-2-oxoglutarate aldolase (HOGA1) is a mitochondrial enzyme that plays a gatekeeper role in hydroxyproline metabolism. Its loss of function in humans causes primary hyperoxaluria type 3 (PH3), a rare condition characterised by excessive production of oxalate. In this study, we investigated the significance of the associated oxaloacetate decarboxylase activity which is also catalysed by HOGA1. Kinetic studies using the recombinant human enzyme (hHOGA1) and active site mutants showed both these dual activities utilise the same catalytic machinery with micromolar substrate affinities suggesting that both are operative in vivo. Biophysical and structural studies showed that pyruvate was a competitive inhibitor with an inhibition constant in the micromolar range. By comparison α-ketoglutarate was a weak inhibitor with an inhibition constant in the millimolar range and could only be isolated as an adduct with the active site Lys196 in the presence of sodium borohydride. These studies suggest that pyruvate inhibits HOGA1 activity during gluconeogenesis. We also propose that loss of HOGA1 function could increase oxalate production in PH3 by decreasing pyruvate availability and metabolic flux through the Krebs cycle.


Subject(s)
Enzyme Inhibitors/metabolism , Hyperoxaluria, Primary/enzymology , Ketoglutaric Acids/metabolism , Oxo-Acid-Lyases/metabolism , Pyruvic Acid/metabolism , Catalytic Domain , Enzyme Inhibitors/chemistry , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/metabolism , Ketoglutaric Acids/chemistry , Kinetics , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Pyruvic Acid/chemistry
4.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31253574

ABSTRACT

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Subject(s)
BRCA1 Protein/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Deubiquitinating Enzymes/genetics , Histone Chaperones/genetics , Neoplasms/genetics , Binding Sites/genetics , Carrier Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/immunology , Cytoplasm/genetics , Cytoplasm/immunology , DNA Breaks, Double-Stranded , DNA Repair/immunology , Deubiquitinating Enzymes/immunology , HeLa Cells , Humans , Immunity, Cellular/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Neoplasms/immunology , Nuclear Matrix-Associated Proteins/genetics , Protein Binding/genetics , Ubiquitin/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitination/genetics
5.
Nature ; 571(7764): E6, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31239520

ABSTRACT

In this Article, in Fig. 1a, the 5' and 3' labels were reversed in the DNA sequence, and Fig. 4 was missing panel labels a-e. These errors have been corrected online.

6.
Nature ; 571(7763): 79-84, 2019 07.
Article in English | MEDLINE | ID: mdl-31142837

ABSTRACT

Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , DNA/metabolism , DNA/ultrastructure , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Pyrimidine Dimers/analysis , Cryoelectron Microscopy , DNA/chemistry , DNA/radiation effects , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Humans , Models, Molecular , Nucleosomes/genetics , Nucleosomes/radiation effects , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/genetics , Thermodynamics , Ultraviolet Rays/adverse effects
7.
Science ; 362(6414)2018 11 02.
Article in English | MEDLINE | ID: mdl-30385546

ABSTRACT

The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys2-His2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.


Subject(s)
CYS2-HIS2 Zinc Fingers , Lenalidomide/pharmacology , Peptide Hydrolases/metabolism , Proteolysis/drug effects , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , HEK293 Cells , Humans , Ikaros Transcription Factor/metabolism , Proteome/metabolism , Thalidomide/pharmacology
8.
Nat Struct Mol Biol ; 24(7): 588-595, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28604726

ABSTRACT

In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∼125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.


Subject(s)
DNA End-Joining Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Binding Sites , Crystallography, X-Ray , DNA/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Saccharomyces cerevisiae/enzymology
9.
Proc Natl Acad Sci U S A ; 114(9): 2247-2252, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28202732

ABSTRACT

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 µm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 µm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.


Subject(s)
Crystallography/methods , Electrons , Granulovirus/ultrastructure , Intercellular Signaling Peptides and Proteins/chemistry , Lasers , Crystallography/instrumentation , Granulovirus/chemistry , Models, Molecular , Progranulins , Protein Structure, Secondary , Synchrotrons
10.
Nature ; 531(7596): 598-603, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029275

ABSTRACT

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.


Subject(s)
Biocatalysis , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Peptide Hydrolases/metabolism , Peptide Hydrolases/ultrastructure , Allosteric Regulation , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Binding Sites , COP9 Signalosome Complex , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Cullin Proteins/ultrastructure , DNA Damage , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Humans , Kinetics , Models, Molecular , Multiprotein Complexes/chemistry , Peptide Hydrolases/chemistry , Protein Binding , Ubiquitination , Ubiquitins/metabolism
11.
Acta Crystallogr D Struct Biol ; 72(Pt 3): 326-35, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26960120

ABSTRACT

The COP9 signalosome (CSN) is an essential multi-protein complex in eukaryotes. CSN is a master regulator of intracellular protein degradation, controlling the vast family of cullin-RING ubiquitin (E3) ligases (CRLs). Important in many cellular processes, CSN has prominent roles in DNA repair, cell-cycle control and differentiation. The recent crystal structure of human CSN provides insight into its exquisite regulation and functionality [Lingaraju et al. (2014), Nature (London), 512, 161-165]. Structure determination was complicated by low-resolution diffraction from crystals affected by twinning and rotational pseudo-symmetry. Crystal instability and non-isomorphism strongly influenced by flash-cooling, radiation damage and difficulty in obtaining heavy-atom derivatives, were overcome. Many different subunits of the same fold class were distinguished at low resolution aided by combinatorial selenomethionine labelling. As an example of how challenging projects can be approached, the structure determination of CSN is described as it unfolded using cluster-compound MIRAS phasing, MR-SAD with electron-density models and cross-crystal averaging exploiting non-isomorphism among unit-cell variants of the same crystal form.


Subject(s)
Crystallography, X-Ray/methods , Multiprotein Complexes/chemistry , Peptide Hydrolases/chemistry , Animals , Arabidopsis/chemistry , Arabidopsis Proteins/chemistry , COP9 Signalosome Complex , Crystallization/methods , Drosophila , Humans , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Selenomethionine/chemistry
12.
Proc Natl Acad Sci U S A ; 112(14): 4310-5, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831534

ABSTRACT

Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.


Subject(s)
Bacterial Proteins/chemistry , Mycobacterium tuberculosis/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Crystallization , Crystallography, X-Ray , Escherichia coli/metabolism , Humans , Molecular Conformation , Molecular Sequence Data , Mycobacterium tuberculosis/metabolism , Peptides/chemistry , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Ribosomes/chemistry , Stereoisomerism , Thermus/metabolism
13.
Proc Natl Acad Sci U S A ; 112(13): 3973-8, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25787255

ABSTRACT

The great benefits that chemical pesticides have brought to agriculture are partly offset by widespread environmental damage to nontarget species and threats to human health. Microbial bioinsecticides are considered safe and highly specific alternatives but generally lack potency. Spindles produced by insect poxviruses are crystals of the fusolin protein that considerably boost not only the virulence of these viruses but also, in cofeeding experiments, the insecticidal activity of unrelated pathogens. However, the mechanisms by which spindles assemble into ultra-stable crystals and enhance virulence are unknown. Here we describe the structure of viral spindles determined by X-ray microcrystallography from in vivo crystals purified from infected insects. We found that a C-terminal molecular arm of fusolin mediates the assembly of a globular domain, which has the hallmarks of lytic polysaccharide monooxygenases of chitinovorous bacteria. Explaining their unique stability, a 3D network of disulfide bonds between fusolin dimers covalently crosslinks the entire crystalline matrix of spindles. However, upon ingestion by a new host, removal of the molecular arm abolishes this stabilizing network leading to the dissolution of spindles. The released monooxygenase domain is then free to disrupt the chitin-rich peritrophic matrix that protects insects against oral infections. The mode of action revealed here may guide the design of potent spindles as synergetic additives to bioinsecticides.


Subject(s)
Virulence Factors/chemistry , Viruses/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Chitin/chemistry , Crystallization , Crystallography, X-Ray , Disulfides/chemistry , Insecta , Insecticides/chemistry , Macromolecular Substances , Mixed Function Oxygenases/chemistry , Models, Molecular , Molecular Sequence Data , Oxygen/chemistry , Oxygenases/chemistry , Polysaccharides , Poxviridae/metabolism , Protein Structure, Tertiary , Viral Proteins/chemistry , Virulence , Virulence Factors/physiology
14.
Nature ; 512(7513): 161-5, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25043011

ABSTRACT

Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire ∼350-kDa human CSN holoenzyme at 3.8 Å resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal α-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.


Subject(s)
Models, Molecular , Multiprotein Complexes/chemistry , Peptide Hydrolases/chemistry , Adaptor Proteins, Signal Transducing , COP9 Signalosome Complex , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Peptide Hydrolases/metabolism , Protein Binding , Protein Structure, Tertiary , Transcription Factors/metabolism
15.
Nat Struct Mol Biol ; 21(3): 261-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24509834

ABSTRACT

Repair of DNA double-strand breaks via homologous recombination can produce double Holliday junctions (dHJs) that require enzymatic separation. Topoisomerase IIIα (TopIIIα) together with RMI1 disentangles the final hemicatenane intermediate obtained once dHJs have converged. How binding of RMI1 to TopIIIα influences it to behave as a hemicatenane dissolvase, rather than as an enzyme that relaxes DNA topology, is unknown. Here, we present the crystal structure of human TopIIIα complexed to the first oligonucleotide-binding domain (OB fold) of RMI1. TopIII assumes a toroidal type 1A topoisomerase fold. RMI1 attaches to the edge of the gate in TopIIIα through which DNA passes. RMI1 projects a 23-residue loop into the TopIIIα gate, thereby influencing the dynamics of its opening and closing. Our results provide a mechanistic rationale for how RMI1 stabilizes TopIIIα-gate opening to enable dissolution and illustrate how binding partners modulate topoisomerase function.


Subject(s)
Carrier Proteins/metabolism , DNA Topoisomerases, Type I/metabolism , DNA, Cruciform/genetics , Nuclear Proteins/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA Breaks, Double-Stranded , DNA, Single-Stranded/genetics , DNA-Binding Proteins , Gene Deletion , Humans , Models, Molecular , Molecular Sequence Data , Oligonucleotides/chemistry , Oligonucleotides/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Solubility
16.
Article in English | MEDLINE | ID: mdl-24316828

ABSTRACT

In Mycobacterium tuberculosis, the protein MbtN (Rv1346) catalyzes the formation of a double bond in the fatty-acyl moiety of the siderophore mycobactin, which is used by this organism to acquire essential iron. MbtN is homologous to acyl-CoA dehydrogenases, whose general role is to catalyze the α,ß-dehydrogenation of fatty-acyl-CoA conjugates. Mycobactins, however, contain a long unsaturated fatty-acid chain with an unusual cis double bond conjugated to the carbonyl group of the mycobactin core. To characterize the role of MbtN in the dehydrogenation of this fatty-acyl moiety, the enzyme has been expressed, purified and crystallized. The crystals diffracted to 2.3 Å resolution at a synchrotron source and were found to belong to the hexagonal space group H32, with unit-cell parameters a = b = 139.10, c = 253.09 Å, α = ß = 90, γ = 120°.


Subject(s)
Acyl-CoA Dehydrogenases/chemistry , Bacterial Proteins/chemistry , Mycobacterium tuberculosis/chemistry , Acyl-CoA Dehydrogenases/genetics , Acyl-CoA Dehydrogenases/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Mycobacterium tuberculosis/genetics , Oxazoles/chemistry , Oxazoles/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Siderophores/chemistry , Siderophores/metabolism
17.
Cell ; 153(6): 1340-53, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746845

ABSTRACT

Yeast telomeres comprise irregular TG1₋3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.


Subject(s)
Chromosomes, Fungal/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Interaction Maps , Sequence Alignment , Shelterin Complex
18.
J Biol Chem ; 288(3): 1643-52, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23179721

ABSTRACT

D-Xylulokinase (XK; EC 2.7.1.17) catalyzes the ATP-dependent phosphorylation of d-xylulose (Xu) to produce xylulose 5-phosphate (Xu5P). In mammals, XK is the last enzyme in the glucuronate-xylulose pathway, active in the liver and kidneys, and is linked through its product Xu5P to the pentose-phosphate pathway. XK may play an important role in metabolic disease, given that Xu5P is a key regulator of glucose metabolism and lipogenesis. We have expressed the product of a putative human XK gene and identified it as the authentic human d-xylulokinase (hXK). NMR studies with a variety of sugars showed that hXK acts only on d-xylulose, and a coupled photometric assay established its key kinetic parameters as K(m)(Xu) = 24 ± 3 µm and k(cat) = 35 ± 5 s(-1). Crystal structures were determined for hXK, on its own and in complexes with Xu, ADP, and a fluorinated inhibitor. These reveal that hXK has a two-domain fold characteristic of the sugar kinase/hsp70/actin superfamily, with glycerol kinase as its closest relative. Xu binds to domain-I and ADP to domain-II, but in this open form of hXK they are 10 Å apart, implying that a large scale conformational change is required for catalysis. Xu binds in its linear keto-form, sandwiched between a Trp side chain and polar side chains that provide exquisite hydrogen bonding recognition. The hXK structure provides a basis for the design of specific inhibitors with which to probe its roles in sugar metabolism and metabolic disease.


Subject(s)
Adenosine Diphosphate/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Xylulose/analogs & derivatives , Adenosine Diphosphate/metabolism , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Humans , Hydrogen Bonding , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Pentosephosphates/chemistry , Pentosephosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Xylulose/metabolism
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 10): 1259-62, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027762

ABSTRACT

In mammals, the enzyme D-xylulokinase (XK; EC 2.7.1.17) catalyses the last step of the glucuronate-xylulose pathway, in which the ketopentose sugar D-xylulose is phosphorylated to yield D-xylulose 5-phosphate (Xu5P). Xu5P is also a metabolite of the pentose phosphate pathway and acts as a signalling molecule that regulates lipogenesis and glycolysis in the liver. To date, no eukaryotic XK has been structurally characterized. A putative human XK was expressed in Escherichia coli aided by molecular chaperones, purified and crystallized. A seeding procedure involving repeated rounds of seeding was developed and proved to be essential for obtaining diffraction-quality crystals. Preliminary X-ray diffraction analysis was performed using synchrotron radiation. This resulted in the collection of a complete diffraction data set to 2.7 Šresolution from a crystal belonging to the trigonal space group P3(1) or P3(2) with unit-cell parameters a = b = 101.87, c = 158.85 Å.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/chemistry , Crystallography, X-Ray , Humans
20.
Article in English | MEDLINE | ID: mdl-22232173

ABSTRACT

Human dihydrodipicolinate synthase-like protein (DHDPSL) is a gene product of unknown function. It is homologous to bacterial pyruvate-dependent aldolases such as dihydrodipicolinate synthase (DHDPS), which functions in lysine biosynthesis. However, it cannot have this function and instead is implicated in a genetic disorder that leads to excessive production of oxalate and kidney-stone formation. In order to better understand its function, DHDPSL was expressed as an MBP-fusion protein and crystallized using an in situ proteolysis protocol. Two crystal forms were obtained, both of which diffracted X-rays to approximately 2.0 Å resolution. One of these, belonging to space group P6(2)22 or P6(4)22 with unit-cell parameters a = b = 142.9, c = 109.8 Å, α = ß = 90, γ = 120°, was highly reproducible and suitable for structure determination by X-ray crystallography.


Subject(s)
Hydro-Lyases/chemistry , Crystallization , Crystallography, X-Ray , Humans , Hydro-Lyases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL