Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Catal ; 7(5): 499-509, 2024.
Article in English | MEDLINE | ID: mdl-38828429

ABSTRACT

Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a ß-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.

2.
ACS Catal ; 14(9): 7166-7172, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38721371

ABSTRACT

Resistance to antibiotics is a public health crisis. Although carbapenems are less susceptible to resistance than other ß-lactam antibiotics, ß-lactamases mediating resistance against these drugs are spreading. Here, we dissect the contributions of electric fields to carbapenemase activity in class A ß-lactamases. We perform QM/MM molecular dynamics simulations of meropenem acyl-enzyme hydrolysis that correctly discriminate carbapenemases. Electric field analysis shows that active-site fields in the deacylation transition state and tetrahedral intermediate are important determinants of activity. The active-site fields identify several residues, some distal, that distinguish efficient carbapenemases. Our field analysis script (www.github.com/bunzela/FieldTools) may help in understanding and combating antibiotic resistance.

3.
Nat Chem ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702405

ABSTRACT

The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.

4.
Proc Natl Acad Sci U S A ; 120(31): e2306046120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487099

ABSTRACT

The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.


Subject(s)
Hemeproteins , Biophysics , Cryoelectron Microscopy , Electrons , Oxidation-Reduction
5.
ACS Catal ; 11(18): 11532-11541, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34557328

ABSTRACT

Conformational sampling profoundly impacts the overall activity and temperature dependence of enzymes. Peroxidases have emerged as versatile platforms for high-value biocatalysis owing to their broad palette of potential biotransformations. Here, we explore the role of conformational sampling in mediating activity in the de novo peroxidase C45. We demonstrate that 2,2,2-triflouoroethanol (TFE) affects the equilibrium of enzyme conformational states, tending toward a more globally rigid structure. This is correlated with increases in both stability and activity. Notably, these effects are concomitant with the emergence of curvature in the temperature-activity profile, trading off activity gains at ambient temperature with losses at high temperatures. We apply macromolecular rate theory (MMRT) to understand enzyme temperature dependence data. These data point to an increase in protein rigidity associated with a difference in the distribution of protein dynamics between the ground and transition states. We compare the thermodynamics of the de novo enzyme activity to those of a natural peroxidase, horseradish peroxidase. We find that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the putative distribution of protein dynamics between the ground and transition states. The addition of TFE apparently causes C45 to behave more like the natural enzyme. Our data suggest robust, generic strategies for improving biocatalytic activity by manipulating protein rigidity; for functional de novo protein catalysts in particular, this can provide more enzyme-like catalysts without further rational engineering, computational redesign, or directed evolution.

6.
Nat Chem ; 13(10): 1017-1022, 2021 10.
Article in English | MEDLINE | ID: mdl-34413499

ABSTRACT

Activation heat capacity is emerging as a crucial factor in enzyme thermoadaptation, as shown by the non-Arrhenius behaviour of many natural enzymes. However, its physical origin and relationship to the evolution of catalytic activity remain uncertain. Here we show that directed evolution of a computationally designed Kemp eliminase reshapes protein dynamics, which gives rise to an activation heat capacity absent in the original design. These changes buttress transition-state stabilization. Extensive molecular dynamics simulations show that evolution results in the closure of solvent-exposed loops and a better packing of the active site. Remarkably, this gives rise to a correlated dynamical network that involves the transition state and large parts of the protein. This network tightens the transition-state ensemble, which induces a negative activation heat capacity and non-linearity in the activity-temperature dependence. Our results have implications for understanding enzyme evolution and suggest that selectively targeting the conformational dynamics of the transition-state ensemble by design and evolution will expedite the creation of novel enzymes.


Subject(s)
Enzymes/metabolism , Evolution, Chemical , Catalysis , Enzymes/chemistry , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
7.
Nat Chem ; 13(3): 231-235, 2021 03.
Article in English | MEDLINE | ID: mdl-33526894

ABSTRACT

New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels-Alder reaction. The artificial metalloenzyme achieves >104 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/KTS = 2.9 × 1010 M-1) that exceeds all previously characterized Diels-Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels-Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.


Subject(s)
Lewis Acids/chemistry , Metalloproteins/metabolism , Catalysis , Catalytic Domain , Cycloaddition Reaction , Density Functional Theory , Directed Molecular Evolution , Hydrogen Bonding , Kinetics , Metalloproteins/chemistry , Molecular Docking Simulation , Substrate Specificity
8.
Curr Opin Struct Biol ; 67: 212-218, 2021 04.
Article in English | MEDLINE | ID: mdl-33517098

ABSTRACT

De novo enzymes can be created by computational design and directed evolution. Here, we review recent insights into the origins of catalytic power in evolved designer enzymes to pinpoint opportunities for next-generation designs: Evolution precisely organizes active sites, introduces catalytic H-bonding networks, invokes electrostatic catalysis, and creates dynamical networks embedding the active site in a reactive protein scaffold. Such insights foster our fundamental knowledge of enzyme catalysis and fuel the future design of tailor-made enzymes.


Subject(s)
Directed Molecular Evolution , Enzymes , Proteins , Catalysis , Catalytic Domain , Enzymes/genetics , Enzymes/metabolism , Protein Engineering , Proteins/genetics , Static Electricity
9.
Science ; 370(6523): 1442-1446, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33214289

ABSTRACT

The advent of biocatalysts designed computationally and optimized by laboratory evolution provides an opportunity to explore molecular strategies for augmenting catalytic function. Applying a suite of nuclear magnetic resonance, crystallography, and stopped-flow techniques to an enzyme designed for an elementary proton transfer reaction, we show how directed evolution gradually altered the conformational ensemble of the protein scaffold to populate a narrow, highly active conformational ensemble and accelerate this transformation by nearly nine orders of magnitude. Mutations acquired during optimization enabled global conformational changes, including high-energy backbone rearrangements, that cooperatively organized the catalytic base and oxyanion stabilizer, thus perfecting transition-state stabilization. The development of protein catalysts for many chemical transformations could be facilitated by explicitly sampling conformational substates during design and specifically stabilizing productive substates over all unproductive conformations.


Subject(s)
Biocatalysis , Computer-Aided Design , Directed Molecular Evolution , Enzymes/chemistry , Enzymes/genetics , Proteins/chemistry , Proteins/genetics , Catalytic Domain , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
10.
J Am Chem Soc ; 141(30): 11745-11748, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31282667

ABSTRACT

Temperature influences the reaction kinetics and evolvability of all enzymes. To understand how evolution shapes the thermodynamic drivers of catalysis, we optimized the modest activity of a computationally designed enzyme for an elementary proton-transfer reaction by nearly 4 orders of magnitude over 9 rounds of mutagenesis and screening. As theorized for primordial enzymes, the catalytic effects of the original design were almost entirely enthalpic in origin, as were the rate enhancements achieved by laboratory evolution. However, the large reductions in ΔH⧧ were partially offset by a decrease in TΔS⧧ and unexpectedly accompanied by a negative activation heat capacity, signaling strong adaptation to the operating temperature. These findings echo reports of temperature-dependent activation parameters for highly evolved natural enzymes and are relevant to explanations of enzymatic catalysis and adaptation to changing thermal environments.


Subject(s)
Enzymes/chemistry , Thermodynamics , Biocatalysis , Enzymes/genetics , Enzymes/metabolism , Kinetics , Models, Molecular , Molecular Structure , Protein Engineering , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...