Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Sci Transl Med ; 16(728): eade2774, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170787

ABSTRACT

Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Cohesins , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Mutation/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Repair/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , DNA Damage
2.
Cancer Discov ; 12(2): 522-541, 2022 02.
Article in English | MEDLINE | ID: mdl-34615655

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Dendritic Cells/metabolism , Myeloproliferative Disorders/genetics , Ribonucleoproteins/genetics , Apoptosis , Female , Gender Identity , Humans , Male , Mutation
3.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450205

ABSTRACT

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Subject(s)
Antiviral Agents/pharmacology , Immunity/drug effects , Spliceosomes/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Adaptive Immunity/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cytoplasm/drug effects , Cytoplasm/metabolism , Female , Gene Amplification/drug effects , Humans , Introns/genetics , Mice , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Double-Stranded/metabolism , Signal Transduction/drug effects , Spliceosomes/drug effects , Triple Negative Breast Neoplasms/genetics
4.
Nat Commun ; 11(1): 2089, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350277

ABSTRACT

The role of dysregulation of mRNA alternative splicing (AS) in the development and progression of solid tumors remains to be defined. Here we describe the first comprehensive AS landscape in the spectrum of human prostate cancer (PCa) evolution. We find that the severity of splicing dysregulation correlates with disease progression and establish intron retention as a hallmark of PCa stemness and aggressiveness. Systematic interrogation of 274 splicing-regulatory genes (SRGs) uncovers prevalent genomic copy number variations (CNVs), leading to mis-expression of ~68% of SRGs during PCa development and progression. Consequently, many SRGs are prognostic. Surprisingly, androgen receptor controls a splicing program distinct from its transcriptional regulation. The spliceosome modulator, E7107, reverses cancer aggressiveness and inhibits castration-resistant PCa (CRPC) in xenograft and autochthonous PCa models. Altogether, our studies establish aberrant AS landscape caused by dysregulated SRGs as a hallmark of PCa aggressiveness and the spliceosome as a therapeutic vulnerability for CRPC.


Subject(s)
Introns/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Spliceosomes/metabolism , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cohort Studies , Disease Progression , Down-Regulation/drug effects , Down-Regulation/genetics , Epoxy Compounds/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Macrolides/pharmacology , Male , Mice , Molecular Targeted Therapy , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Transcription, Genetic/drug effects
5.
Nat Commun ; 10(1): 137, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635584

ABSTRACT

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Minor Histocompatibility Antigens/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Splicing/drug effects , bcl-X Protein/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Synergism , Epoxy Compounds/pharmacology , Female , Humans , Lung Neoplasms/genetics , Macrolides/pharmacology , Melanoma/genetics , Mice , Mice, Nude , RNA Interference , RNA Splicing/genetics , RNA, Small Interfering/genetics , Spliceosomes/drug effects , Spliceosomes/genetics , Exome Sequencing , Xenograft Model Antitumor Assays
6.
EBioMedicine ; 39: 215-225, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30581150

ABSTRACT

INTRODUCTION: Therapeutic options for diffuse malignant peritoneal mesothelioma (DMPM) are limited to surgery and locoregional chemotherapy. Despite improvements in survival rates, patients eventually succumb to disease progression. We investigated splicing deregulation both as molecular prognostic factor and potential novel target in DMPM, while we tested modulators of SF3b complex for antitumor activity. METHODS: Tissue-microarrays of 64 DMPM specimens were subjected to immunohistochemical assessment of SF3B1 expression and correlation to clinical outcome. Two primary cell cultures were used for gene expression profiling and in vitro screening of SF3b modulators. Drug-induced splicing alterations affecting downstream cellular pathways were detected through RNA sequencing. Ultimately, we established bioluminescent orthotopic mouse models to test the efficacy of splicing modulation in vivo. RESULTS: Spliceosomal genes are differentially upregulated in DMPM cells compared to normal tissues and high expression of SF3B1 correlated with poor clinical outcome in univariate and multivariate analysis. SF3b modulators (Pladienolide-B, E7107, Meayamycin-B) showed potent cytotoxic activity in vitro with IC50 values in the low nanomolar range. Differential splicing analysis of Pladienolide-B-treated cells revealed abundant alterations of transcripts involved in cell cycle, apoptosis and other oncogenic pathways. This was validated by RT-PCR and functional assays. E7107 demonstrated remarkable in vivo antitumor efficacy, with significant improvement of survival rates compared to vehicle-treated controls. CONCLUSIONS: SF3B1 emerged as a novel potential prognostic factor in DMPM. Splicing modulators markedly impair cancer cell viability, resulting also in potent antitumor activity in vivo. Our data designate splicing as a promising therapeutic target in DMPM.


Subject(s)
Antineoplastic Agents/administration & dosage , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Peritoneal Neoplasms/drug therapy , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , RNA Splicing/drug effects , Tissue Array Analysis/methods , Aged , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epoxy Compounds/administration & dosage , Epoxy Compounds/pharmacology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Macrolides/administration & dosage , Macrolides/pharmacology , Male , Mesothelioma/genetics , Mesothelioma/metabolism , Mesothelioma, Malignant , Mice , Middle Aged , Morpholines/administration & dosage , Morpholines/pharmacology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Phosphoproteins/genetics , Pyrans/administration & dosage , Pyrans/pharmacology , RNA Splicing Factors/genetics , Xenograft Model Antitumor Assays
7.
Nat Commun ; 9(1): 5378, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568163

ABSTRACT

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins , Cell Differentiation , Chromatin/metabolism , Epigenesis, Genetic , HL-60 Cells , Hematopoiesis , Humans , K562 Cells , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , RNA Splicing
8.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282833

ABSTRACT

The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eµ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.


Subject(s)
Alternative Splicing/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Epoxy Compounds/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrolides/pharmacology , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Epoxy Compounds/therapeutic use , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Macrolides/therapeutic use , Male , Mice , Mice, Transgenic , Middle Aged , Mitochondria/drug effects , Mitochondria/pathology , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphoproteins/genetics , Primary Cell Culture , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA Splicing Factors/genetics , Spliceosomes/drug effects , Spliceosomes/metabolism , Sulfonamides/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use
9.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30107174

ABSTRACT

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Subject(s)
Mutation , Neoplasms/genetics , Spliceosomes , Animals , Caspase 8/genetics , Female , Hematopoiesis , Humans , Male , Mice , Mice, Inbred C57BL , NF-kappa B/physiology , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics
10.
J Med Chem ; 61(18): 8120-8135, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30137981

ABSTRACT

Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.


Subject(s)
Drug Discovery , Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Niacinamide/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Allosteric Regulation , Animals , Dogs , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Mice , Models, Molecular , Molecular Structure , Mutation , Niacinamide/chemistry , Niacinamide/pharmacology , Phosphorylation , Protein Conformation , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Article in English | MEDLINE | ID: mdl-29991605

ABSTRACT

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor Antagonists/administration & dosage , Estrogen Receptor alpha/antagonists & inhibitors , Indazoles/administration & dosage , Mutation , Administration, Oral , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cysteine/antagonists & inhibitors , Drug Screening Assays, Antitumor , Drug Synergism , Estrogen Receptor Antagonists/chemistry , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Female , Humans , Indazoles/chemistry , Indazoles/pharmacology , MCF-7 Cells , Mice , Protein Conformation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
12.
Mol Cell ; 70(2): 265-273.e8, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29656923

ABSTRACT

SF3B is a multi-protein complex essential for branch site (BS) recognition and selection during pre-mRNA splicing. Several splicing modulators with antitumor activity bind SF3B and thereby modulate splicing. Here we report the crystal structure of a human SF3B core in complex with pladienolide B (PB), a macrocyclic splicing modulator and potent inhibitor of tumor cell proliferation. PB stalls SF3B in an open conformation by acting like a wedge within a hinge, modulating SF3B's transition to the closed conformation needed to form the BS adenosine-binding pocket and stably accommodate the BS/U2 duplex. This work explains the structural basis for the splicing modulation activity of PB and related compounds, and reveals key interactions between SF3B and a common pharmacophore, providing a framework for future structure-based drug design.


Subject(s)
Antineoplastic Agents/pharmacology , Epoxy Compounds/pharmacology , Macrolides/pharmacology , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , RNA Splicing/drug effects , Adenosine/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Carrier Proteins/metabolism , Cell Proliferation/drug effects , Drug Design , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , HCT116 Cells , HeLa Cells , Humans , Macrolides/chemistry , Macrolides/metabolism , Models, Molecular , Multiprotein Complexes , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Protein Conformation , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins , Sf9 Cells , Structure-Activity Relationship , Trans-Activators
13.
Cell Rep ; 23(1): 282-296.e4, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29617667

ABSTRACT

Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis.


Subject(s)
Mutation Rate , Neoplasms/genetics , RNA Splicing Factors/genetics , Cell Line, Tumor , Genes, Tumor Suppressor , Humans , Loss of Function Mutation , Neoplasms/classification , Oncogenes , RNA Splicing/genetics
14.
Genes Dev ; 32(3-4): 309-320, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29491137

ABSTRACT

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Subject(s)
Epoxy Compounds/chemistry , Macrolides/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , RNA Splicing/drug effects , Spliceosomes/drug effects , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Cryoelectron Microscopy , Models, Molecular , Mutation , Phosphoproteins/isolation & purification , RNA Precursors/metabolism , RNA Splicing Factors/isolation & purification , RNA, Messenger/metabolism , RNA-Binding Proteins , Trans-Activators
15.
Nat Med ; 24(4): 497-504, 2018 05.
Article in English | MEDLINE | ID: mdl-29457796

ABSTRACT

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Piperazines/pharmacology , Pyridines/pharmacology , RNA Splicing/genetics , Small Molecule Libraries/therapeutic use , Spliceosomes/genetics , Administration, Oral , Animals , Base Sequence , Humans , Introns/genetics , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mice , Mutation , Neoplasms/pathology , Piperazines/administration & dosage , Pyridines/administration & dosage , RNA Splicing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Small Molecule Libraries/pharmacology , Tumor Burden , Xenograft Model Antitumor Assays
16.
Cancer Cell ; 33(3): 386-400.e5, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29478914

ABSTRACT

To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.


Subject(s)
CRISPR-Cas Systems/drug effects , Endoribonucleases/drug effects , Leukemia/drug therapy , Muscular Atrophy, Spinal/drug therapy , Quinazolines/pharmacology , Animals , CRISPR-Cas Systems/genetics , Cell Line , Endoribonucleases/genetics , Endoribonucleases/metabolism , Humans , Leukemia/genetics , Male , Metabolic Networks and Pathways/drug effects , Mice, Inbred C57BL , Muscular Atrophy, Spinal/genetics , RNA Precursors/drug effects , RNA Precursors/genetics , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Messenger/genetics
17.
Curr Opin Genet Dev ; 48: 67-74, 2018 02.
Article in English | MEDLINE | ID: mdl-29136527

ABSTRACT

Recently splicing has been recognized as a key pathway in cancer. Although aberrant splicing has been shown to be a consequence of mutations or the abnormal expression of splicing factors (trans-effect changes) or mutations in the splicing sequences (cis-effect mutations), the connections between aberrant splicing and cancer initiation or progression are still not well understood. Here we review the mutational landscape of splicing factors in cancer and associated splicing consequences, along with the most important examples of the therapeutic approaches targeting the spliceosome currently being investigated in oncology.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Oligonucleotides/therapeutic use , RNA Splicing/drug effects , Animals , Humans , Mutation , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Spliceosomes/drug effects , Spliceosomes/metabolism
18.
Cancer Res ; 77(24): 6999-7013, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247039

ABSTRACT

Activation of the fibroblast growth factor receptor FGFR4 by FGF19 drives hepatocellular carcinoma (HCC), a disease with few, if any, effective treatment options. While a number of pan-FGFR inhibitors are being clinically evaluated, their application to FGF19-driven HCC may be limited by dose-limiting toxicities mediated by FGFR1-3 receptors. To evade the potential limitations of pan-FGFR inhibitors, we generated H3B-6527, a highly selective covalent FGFR4 inhibitor, through structure-guided drug design. Studies in a panel of 40 HCC cell lines and 30 HCC PDX models showed that FGF19 expression is a predictive biomarker for H3B-6527 response. Moreover, coadministration of the CDK4/6 inhibitor palbociclib in combination with H3B-6527 could effectively trigger tumor regression in a xenograft model of HCC. Overall, our results offer preclinical proof of concept for H3B-6527 as a candidate therapeutic agent for HCC cases that exhibit increased expression of FGF19. Cancer Res; 77(24); 6999-7013. ©2017 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Cell Transformation, Neoplastic/genetics , Fibroblast Growth Factors/genetics , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Liver Neoplasms/drug therapy , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
19.
Mol Cancer Ther ; 16(12): 2849-2861, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28878028

ABSTRACT

Prognosis of triple-negative breast cancer (TNBC) remains poor. To identify shared and selective vulnerabilities of basal-like TNBC, the most common TNBC subtype, a directed siRNA lethality screen was performed in 7 human breast cancer cell lines, focusing on 154 previously identified dependency genes of 1 TNBC line. Thirty common dependency genes were identified, including multiple proteasome and RNA splicing genes, especially those associated with the U4/U6.U5 tri-snRNP complex (e.g., PRPF8, PRPF38A). PRPF8 or PRPF38A knockdown or the splicing modulator E7107 led to widespread intronic retention and altered splicing of transcripts involved in multiple basal-like TNBC dependencies, including protein homeostasis, mitosis, and apoptosis. E7107 treatment suppressed the growth of basal-A TNBC cell line and patient-derived basal-like TNBC xenografts at a well-tolerated dose. The antitumor response was enhanced by adding the proteasome inhibitor bortezomib. Thus, inhibiting both splicing and the proteasome might be an effective approach for treating basal-like TNBC. Mol Cancer Ther; 16(12); 2849-61. ©2017 AACR.


Subject(s)
RNA Splicing/genetics , Triple Negative Breast Neoplasms/genetics , Cell Proliferation , Female , Humans , Prognosis , Survival Analysis , Triple Negative Breast Neoplasms/mortality
20.
Nat Commun ; 8: 15522, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541300

ABSTRACT

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these splicing modulators.


Subject(s)
Adenosine/chemistry , Alternative Splicing , Carrier Proteins/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , Cell Proliferation , Cell Survival , Cryoelectron Microscopy , Crystallography, X-Ray , Epoxy Compounds/chemistry , Exons , Fatty Alcohols/chemistry , HCT116 Cells , Humans , Introns , Macrolides/chemistry , Mass Spectrometry , Mutagenesis, Site-Directed , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Phosphoproteins/metabolism , Protein Binding , Protein Conformation , Pyrans/chemistry , RNA Interference , RNA Splicing Factors/metabolism , RNA-Binding Proteins , Recombinant Proteins/chemistry , Sequence Analysis, RNA , Spiro Compounds/chemistry , Spliceosomes/metabolism , Trans-Activators
SELECTION OF CITATIONS
SEARCH DETAIL
...