Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(9): 3875-3885, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35192334

ABSTRACT

Functionalization of metal-organic frameworks (MOFs) with noble metal nanoparticles (NPs) is a challenging task. Conventional impregnation by metals often leads to agglomerates on the surface of MOF crystals. Functional groups on linkers interact with metal precursors and promote the homogeneous distribution of NPs in the pores of MOFs, but their uncontrolled localization can block channels and thus hinder mass transport. To overcome this problem, we created nucleation centers only in the defective pores of the UiO-66 MOF via the postsynthesis exchange. First, we have introduced defects into UiO-66 using benzoic acid as a modulator. Second, the modulator was exchanged for amino-benzoic acid. As a result, amino groups have decorated mainly the defective pores and attracted the Pd precursor after impregnation. The interaction of the metal precursor with amino groups and the growth of NPs were monitored by in situ infrared spectroscopy. Three processes were distinguished: the gaseous HCl release, NH2 reactivation, and growth of extended Pd surfaces. Uniform Pd NPs were located in the pores because of the homogeneous distribution of the precursor and pore diffusion-limited nucleation rate. Our work demonstrates an alternative approach of controlled Pd incorporation into UiO-66 that is of great importance for the rational design of heterogeneous catalysts.

2.
Polymers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833350

ABSTRACT

Here, we report a new photosensitive metal-organic framework (MOF) that was constructed via the modification of UiO-66-NH2 with diarylethene molecules (DAE, 4-(5-Methoxy-1,2-dimethyl-1H-indol-3-yl)-3-(2,5-dimethylthiophen-3-yl)-4-furan-2,5-dione). The material that was obtained was a highly crystalline porous compound. The photoresponse of the modified MOF was observed via UV-Vis and IR spectroscopy. Most of the DAE molecules inside of the UiO-66-pores had an open conformation after synthesis. However, the equilibrium was able to be shifted further toward an open conformation using visible light irradiation with a wavelength of 520 nm. Conversely, UV-light with a wavelength of 450 nm initiated the transformation of the photoresponsive moieties inside of the pores to a closed modification. We have shown that this transformation could be used to stimulate hydrogen adsorption-desorption processes. Specifically, visible light irradiation increased the H2 capacity of modified MOF, while UV-light decreased it. A similar hybrid material with DAE moieties in the UiO-66 scaffold was applied for hydrogen storage for the first time. Additionally, the obtained results are promising for smart H2 storage that is able to be managed via light stimuli.

3.
Inorg Chem ; 60(8): 5694-5703, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33830750

ABSTRACT

Two metal-organic frameworks (MOFs), UiO-66 and UiO-66-NH2, were considered as containers for bioactive chemicals. We provide a synthesis technique, which allowed the production of these materials suitable for biomedical applications. Both MOFs were characterized as single-phase porous materials composed of nanoparticles (30-65 nm) with a ζ-potential of more than 40 mV in water suspension. D,L-Leucine was applied as a model molecule, which allowed us to trace the mechanism of the loading process. We showed that after synthesis, amino groups of UiO-66-NH2 are coordinated with solvent residuals. It results in a similar route of leucine loading in UiO-66 and UiO-66-NH2 samples. Using joint data of thermogravimetric analysis and calorimetry, infrared spectroscopy, and nitrogen adsorption, we revealed that methyl groups of leucine molecules are responsible for bonding of an MOF matrix. We proposed the formation of bonds between CH3 groups and benzene rings of linkers via CH-π interaction. We also assessed the toxicity of the synthesized MOFs toward HeLa cells at 50 µg/mL after 24 h incubation and revealed no negative effects on the viability of the cells, prompting further biomedical research in the areas of small-molecule delivery and cell signaling and metabolism modulation.


Subject(s)
Leucine/chemistry , Metal-Organic Frameworks/chemistry , Organometallic Compounds/chemistry , Phthalic Acids/chemistry , Metal-Organic Frameworks/chemical synthesis , Models, Molecular , Nanoparticles/chemistry , Particle Size , Porosity
4.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371302

ABSTRACT

Synthesis of the MIL-100 metal-organic framework particles was carried out by hydrothermal (HT) and microwave (MW)-assisted methods. Transmission electron microscopy showed formation of microparticles in the course of hydrothermal synthesis and nanoparticles for microwave-assisted synthesis. Powder X-ray diffraction confirmed formation of larger crystallites for hydrothermal synthesis. Particle aggregation in aqueous solution was observed by dynamic light scattering. However, the stability of both samples could be improved in acetic acid solution. Nitrogen sorption isotherms showed high porosity of the particles. ᶫ-leucine molecule was used as a model molecule for loading in the porous micro- and nanoparticles. Loading was estimated by FTIR spectroscopy and thermogravimetric analysis. UV-VIS spectroscopy quantified ᶫ-leucine release from the particles in aqueous solution. Cytotoxicity studies using the HeLa cell model showed that the original particles were somewhat toxic, but ᶫ-leucine loading ameliorated the toxic effects, likely due to signaling properties of the amino acid.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Leucine/chemistry , Lysergic Acid Diethylamide/analogs & derivatives , Metal-Organic Frameworks/chemistry , Nanoparticles/administration & dosage , Cell Proliferation , HeLa Cells , Humans , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/pharmacology , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...