Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(17): 18827-18835, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708248

ABSTRACT

Recent studies show that nanofillers greatly contribute to the increase in the mechanical and abrasive behaviors of the polymer composite. In the current study, epoxy composites were made by hand lay-up with the reinforcement of carbon fabric and titanium dioxide (TiO2) nanoparticles as secondary reinforcement in weight percentages of 0.5, 1.0, and 2.0. Hardness, tensile, and abrasive wear tests have been carried out for the fabricated composites. The obtained results confirm that as the percentage of filler addition increases, hardness of the carbon epoxy (CE) composite increases, and significant enhancement of 10.25% hardness is confirmed in 2 wt % nano TiO2-added CE composite. The CE composite filled with 2 wt % of TiO2 nanofiller shows 15.77 and 9.15% improvement of tensile strength and modulus, respectively, compared to unfilled CE composites. The abrasive wear volume exhibits a nearly linear increasing trend as the abrading distance increases. In addition, it is discovered that the abrasive wear volume is greater for higher applied loads. The inclusion of nano TiO2 reduced the wear loss in the CE composite for all abrading distances, regardless of the load, low or high. The scanning electron microscopy analysis of worn surfaces was carried out to analyze the contribution of the filler to improve the wear resistance.

2.
Sci Rep ; 13(1): 10931, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414808

ABSTRACT

The influence of humans on the environment is growing drastically and is pervasive. If this trend continues for a longer time, it can cost humankind, social and economic challenges. Keeping this situation in mind, renewable energy has paved the way as our saviour. This shift will not only help in reducing pollution but will also provide immense opportunities for the youth to work. This work discusses about various waste management strategies and discusses the pyrolysis process in details. Simulations were done keeping pyrolysis as the base process and by varying parameters like feeds and reactor materials. Different feeds were chosen like Low-Density Polyethylene (LDPE), wheat straw, pinewood, and a mixture of Polystyrene (PS), Polyethylene (PE), and Polypropylene (PP). Different reactor materials were considered namely, stainless steel AISI 202, AISI 302, AISI 304, and AISI 405. AISI stands for American Iron and Steel Institute. AISI is used to signify some standard grades of alloy steel bars. Thermal stress and thermal strain values and temperature contours were obtained using simulation software called Fusion 360. These values were plotted against temperature using graphing software called Origin. It was observed that these values increased with increasing temperature. LDPE got the lowest values for stress and stainless steel AISI 304 came out to be the most feasible material for pyrolysis reactor having the ability to withstand high thermal stresses. RSM was effectively used to generate a robust prognostic model with high efficiency, R2 (0.9924-0.9931), and low RMSE (0.236 to 0.347). Optimization based on desirability identified the operating parameters as 354 °C temperature and LDPE feedstock. The best thermal stress and strain responses at these ideal parameters were 1719.67 MPa and 0.0095, respectively.


Subject(s)
Polyethylene , Stainless Steel , Humans , Adolescent , Finite Element Analysis , Pyrolysis , Polypropylenes
3.
Comput Intell Neurosci ; 2023: 9918748, 2023.
Article in English | MEDLINE | ID: mdl-36844694

ABSTRACT

Vehicular ad hoc networks (VANETs) using reliable protocols of routing have become crucial in identifying the changes to topology on a continuous basis for a large collection of vehicles. For this purpose, it becomes important to identify an optimal configuration of these protocols. There are several possible configurations that have been preventing the configuration of efficient protocols that do not make use of automatic and intelligent design tools. It can further motivate using the techniques of metaheuristics like the tools, which are well-suited to be able to solve these problems. The glowworm swarm optimization (GSO), simulated annealing (SA), and slow heat-based SA-GSO algorithms have been proposed in this work. The SA is a method of optimization, which imitates the manner in which the thermal system has been frozen down to its lowest state of energy. In the GSO, there is guidance to the rules of feasibility, where the swarm converges to its feasible regions very fast. Additionally, for overcoming any premature convergence, there is a local search strategy that is based on the SA and is used for making a search that is near to its true optimum solutions. Finally, this sluggish temperature-based SA-GSO algorithm will be employed to solve routing problems and problems of heat transfer. There is a hybrid slow heat SA-GSO algorithm with a faster speed of convergence and higher precision of computation that is more effective in solving problems of constrained engineering.


Subject(s)
Algorithms , Hot Temperature , Temperature , Engineering , Problem Solving
4.
Cardiovasc Diagn Ther ; 6(3): 208-20, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27280084

ABSTRACT

BACKGROUND: Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition. METHODS: In the present work, the onset of turbulent transition during pulsatile flow through coronary arteries for varying degree of stenosis (i.e., 0%, 30%, 50% and 70%) is quantitatively analyzed by calculating the turbulent parameters distal to the stenosis. Also, the effect of turbulence transition on hemodynamic parameters such as WSS and oscillatory shear index (OSI) for varying degree of stenosis is quantified. The validated transitional shear stress transport (SST) k-ω model used in the present investigation is the best suited Reynolds averaged Navier-Stokes turbulence model to capture the turbulent transition. The arterial wall is assumed to be rigid and the dynamic curvature effect due to myocardial contraction on the blood flow has been neglected. RESULTS: Our observations shows that for stenosis 50% and above, the WSSavg, WSSmax and OSI calculated using turbulence model deviates from laminar by more than 10% and the flow disturbances seems to significantly increase only after 70% stenosis. Our model shows reliability and completely validated. CONCLUSIONS: Blood flow through stenosed coronary arteries seems to be turbulent in nature for area stenosis above 70% and the transition to turbulent flow begins from 50% stenosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...