Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446359

ABSTRACT

Desmin is a class III intermediate filament protein highly expressed in cardiac, smooth and striated muscle. Autosomal dominant or recessive mutations in the desmin gene (DES) result in a variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively called desminopathies. Here we describe the clinical, histological and radiological features of a Greek patient with a myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene. Moreover, through ribonucleic acid sequencing analysis in skeletal muscle we show that this variant provokes a defect in exon 3 splicing and thus should be considered clearly pathogenic.


Subject(s)
Cardiomyopathies , Muscular Diseases , Myopathies, Structural, Congenital , Humans , Desmin/genetics , Desmin/metabolism , Greece , Cardiomyopathies/metabolism , Myopathies, Structural, Congenital/metabolism , Muscle, Skeletal/metabolism , Mutation , Muscular Diseases/metabolism
2.
Hum Genomics ; 17(1): 7, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765386

ABSTRACT

SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated in the past few years its high ability to predict splicing defects caused by DNA variations. However, its outputs present several drawbacks: (1) although the numerical values are very convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are delta scores which can sometimes mask a severe consequence, and (3) complex delins are most often not handled. We present here SpliceAI-visual, a free online tool based on the SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived implementations able to annotate complex variants (e.g., complex delins). We report here the benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-visual is available as a Google Colab notebook and has also been fully integrated in a free online variant interpretation tool, MobiDetails ( https://mobidetails.iurc.montp.inserm.fr/MD ).


Subject(s)
Algorithms , RNA Splicing , Humans , RNA Splicing/genetics
3.
Eur J Hum Genet ; 31(4): 461-468, 2023 04.
Article in English | MEDLINE | ID: mdl-36747006

ABSTRACT

Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/genetics , Mutation, Missense , Carrier Proteins/genetics , Ubiquitin-Protein Ligases/genetics
4.
Eur J Hum Genet ; 31(8): 967-970, 2023 08.
Article in English | MEDLINE | ID: mdl-36828924

ABSTRACT

ADNP is a well-known gene implicated in intellectual disability and its molecular spectrum consists mainly in loss of function variant in the ADNP last and largest exon. Here, we report the first description of a patient with intellectual disability identified with an intragenic inversion in ADNP. RNAseq experiment showed a splice skipping of the inversed exons. Moreover, in-silico analysis of initiating ATGs in the mutated transcript using contextual Kozak score suggested that several initiating ATGs were likely used to translate poisonous out-of-frame ORFs and would lead to the suppression of any in-frame rescuing translation, thereby causing haploinsufficiency. As constitutive Alu sequences with high homology were identified at both breakpoints in reversed orientation in the reference genome, we hypothesized that Alu-mediated non-allelic-homologous recombination was responsible for this rearrangement. Therefore, as this inversion is not detectable by exome sequencing, this mechanism could be a potential underdiagnosed recurrent mutation in ADNP-related disorders.


Subject(s)
Intellectual Disability , Humans , Exons , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Mutation , Nerve Tissue Proteins/genetics
5.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36413998

ABSTRACT

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Subject(s)
Brain Diseases , Dynamins , Epileptic Syndromes , Humans , Brain Diseases/genetics , Causality , Dynamins/genetics , Exons/genetics , Heterozygote , Mutation/genetics , Epileptic Syndromes/genetics
6.
Nat Commun ; 13(1): 6570, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323681

ABSTRACT

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Humans , Chromosomes, Human, X/genetics , Genes, X-Linked , Intellectual Disability/genetics , Autism Spectrum Disorder/genetics , Databases, Genetic
7.
Genet Med ; 24(10): 2065-2078, 2022 10.
Article in English | MEDLINE | ID: mdl-35980381

ABSTRACT

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Subject(s)
Neurodevelopmental Disorders , Nonmuscle Myosin Type IIB , Actins , Cilia/genetics , Hedgehog Proteins/genetics , Humans , Myosin Heavy Chains/genetics , Neurodevelopmental Disorders/genetics , Nonmuscle Myosin Type IIB/genetics
8.
Am J Hum Genet ; 109(8): 1436-1457, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35907405

ABSTRACT

ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Receptors, G-Protein-Coupled , Receptors, Peptide , Adult , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Mice , Mice, Knockout , Neurodevelopmental Disorders/genetics
9.
Clin Genet ; 102(2): 98-109, 2022 08.
Article in English | MEDLINE | ID: mdl-35616059

ABSTRACT

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Subject(s)
Intellectual Disability , Movement Disorders , Neurodevelopmental Disorders , Transcription Factors , Humans , Intellectual Disability/diagnosis , Movement Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/complications , Seizures/genetics , Transcription Factors/genetics
10.
J Med Genet ; 59(5): 505-510, 2022 05.
Article in English | MEDLINE | ID: mdl-33811134

ABSTRACT

De novo missense variants in KCNH1 encoding Kv10.1 are responsible for two clinically recognisable phenotypes: Temple-Baraitser syndrome (TBS) and Zimmermann-Laband syndrome (ZLS). The clinical overlap between these two syndromes suggests that they belong to a spectrum of KCNH1-related encephalopathies. Affected patients have severe intellectual disability (ID) with or without epilepsy, hypertrichosis and distinctive features such as gingival hyperplasia and nail hypoplasia/aplasia (present in 20/23 reported cases).We report a series of seven patients with ID and de novo pathogenic KCNH1 variants identified by whole-exome sequencing or an epilepsy gene panel in whom the diagnosis of TBS/ZLS had not been first considered. Four of these variants, p.(Thr294Met), p.(Ala492Asp), p.(Thr493Asn) and p.(Gly496Arg), were located in the transmembrane domains S3 and S6 of Kv10.1 and one, p.(Arg693Gln), in its C-terminal cyclic nucleotide-binding homology domain (CNBHD). Clinical reappraisal by the referring clinical geneticists confirmed the absence of the distinctive gingival and nail features of TBS/ZLS.Our study expands the phenotypical spectrum of KCNH1-related encephalopathies to individuals with an attenuated extraneurological phenotype preventing a clinical diagnosis of TBS or ZLS. This subtype may be related to recurrent substitutions of the Gly496, suggesting a genotype-phenotype correlation and, possibly, to variants in the CNBHD domain.


Subject(s)
Epilepsy , Intellectual Disability , Abnormalities, Multiple , Craniofacial Abnormalities , Epilepsy/diagnosis , Epilepsy/genetics , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Fibromatosis, Gingival , Hallux/abnormalities , Hand Deformities, Congenital , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Nails, Malformed , Phenotype , Thumb/abnormalities
12.
Genet Med ; 24(2): 492-498, 2022 02.
Article in English | MEDLINE | ID: mdl-34906476

ABSTRACT

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Subject(s)
Epilepsy , Epilepsy/complications , Epilepsy/genetics , Homozygote , Humans , Sialyltransferases/deficiency , Sialyltransferases/genetics
13.
Neurol Genet ; 7(6): e613, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34790866

ABSTRACT

BACKGROUND AND OBJECTIVES: Purine-rich element-binding protein A (PURA) gene encodes Pur-α, a conserved protein essential for normal postnatal brain development. Recently, a PURA syndrome characterized by intellectual disability, hypotonia, epilepsy, and dysmorphic features was suggested. The aim of this study was to define and expand the phenotypic spectrum of PURA syndrome by collecting data, including EEG, from a large cohort of affected patients. METHODS: Data on unpublished and published cases were collected through the PURA Syndrome Foundation and the literature. Data on clinical, genetic, neuroimaging, and neurophysiologic features were obtained. RESULTS: A cohort of 142 patients was included. Characteristics of the PURA syndrome included neonatal hypotonia, feeding difficulties, and respiratory distress. Sixty percent of the patients developed epilepsy with myoclonic, generalized tonic-clonic, focal seizures, and/or epileptic spasms. EEG showed generalized, multifocal, or focal epileptic abnormalities. Lennox-Gastaut was the most common epilepsy syndrome. Drug refractoriness was common: 33.3% achieved seizure freedom. We found 97 pathogenic variants in PURA without any clear genotype-phenotype associations. DISCUSSION: The PURA syndrome presents with a developmental and epileptic encephalopathy with characteristics recognizable from neonatal age, which should prompt genetic screening. Sixty percent have drug-resistant epilepsy with focal or generalized seizures. We collected more than 90 pathogenic variants without observing overt genotype-phenotype associations.

14.
Front Neurol ; 12: 738272, 2021.
Article in English | MEDLINE | ID: mdl-34744978

ABSTRACT

Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.

15.
Eur J Med Genet ; 64(11): 104323, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34474177

ABSTRACT

Transcription factor IID is a multimeric protein complex that is essential for the initiation of transcription by RNA polymerase II. One of its critical components, the TATA-binding protein-associated factor 2, is encoded by the gene TAF2. Pathogenic variants of this gene have been shown to be responsible for the Mental retardation, autosomal recessive 40 syndrome. This syndrome is characterized by severe intellectual disability, postnatal microcephaly, pyramidal signs and thin corpus callosum. Until now, only three families have been reported separately. Here we report four individuals, from two unrelated families, who present with severe intellectual disability and global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum and who carry homozygous TAF2 missense variants detected by Exome Sequencing. Taken together, our findings and those of previously reported subjects allow us to further delineate the clinical phenotype associated with TAF2 biallelic mutations.


Subject(s)
Developmental Disabilities/genetics , Foot Deformities, Congenital/genetics , Microcephaly/genetics , Phenotype , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Corpus Callosum/pathology , Developmental Disabilities/pathology , Female , Foot Deformities, Congenital/pathology , Humans , Male , Microcephaly/pathology
16.
Eur J Paediatr Neurol ; 33: 121-124, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34174751

ABSTRACT

BACKGROUND: Variants in SCN1A gene, encoding the voltage-gated sodium channel Nav1.1, are associated with distinct epilepsy syndromes ranging from the relatively benign genetic epilepsy with febrile seizures plus (GEFS+) to Dravet syndrome, a severe developmental and epileptic encephalopathy (DEE). Most SCN1A pathogenic variants are heterozygous changes inherited in a dominant or de novo inheritance and many cause a loss-of-function of one allele. To date, recessive inheritance has been suggested in only two families with affected children harboring homozygous SCN1A missense variants while their heterozygous parents were asymptomatic. The aim of this report is to describe two additional families in which affected individuals have biallelic SCN1A variants possibly explaining their phenotype. METHODS AND RESULTS: We report two novel homozygous SCN1A missense variants in two patients from related parents. Both patients had fever-sensitive epilepsy beginning in the first months of life, followed by afebrile seizures, without severe cognitive impairment. Parents were asymptomatic. Next generation sequencing excluded a pathogenic variant in other genes involved in DEE. Estimation of pathogenicity scores by in-silico tools suggests that the impact of these SCN1A variants is less damaging than that of dominant pathogenic variants. CONCLUSION: This study provides additional evidence that homozygous variants in SCN1A can cause GEFS+. This recessive inheritance would imply that hypomorphic variants may not necessarily cause epilepsy at the heterozygous state but may decrease the seizure threshold when combined.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsies, Myoclonic/genetics , Epileptic Syndromes , Humans , Mutation , Phenotype , Seizures, Febrile/genetics
17.
Genet Med ; 23(9): 1715-1725, 2021 09.
Article in English | MEDLINE | ID: mdl-34054129

ABSTRACT

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Subject(s)
Eye Abnormalities , Neurodevelopmental Disorders , Animals , Eye Abnormalities/genetics , Genetic Association Studies , Humans , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Receptors, Cell Surface , Zebrafish/genetics
19.
Hum Mutat ; 42(4): 408-420, 2021 04.
Article in English | MEDLINE | ID: mdl-33410562

ABSTRACT

ABCC8 encodes the SUR1 subunit of the ß-cell ATP-sensitive potassium channel whose loss of function causes congenital hyperinsulinism (CHI). Molecular diagnosis is critical for optimal management of CHI patients. Unfortunately, assessing the impact of ABCC8 variants on RNA splicing remains very challenging as this gene is poorly expressed in leukocytes. Here, we performed bioinformatics analysis and cell-based minigene assays to assess the impact on splicing of 13 ABCC8 variants identified in 20 CHI patients. Next, channel properties of SUR1 proteins expected to originate from minigene-detected in-frame splicing defects were analyzed after ectopic expression in COSm6 cells. Out of the analyzed variants, seven induced out-of-frame splicing defects and were therefore classified as recessive pathogenic, whereas two led to skipping of in-frame exons. Channel functional analysis of the latter demonstrated their pathogenicity. Interestingly, the common rs757110 SNP increased exon skipping in our system suggesting that it may act as a disease modifier factor. Our strategy allowed determining the pathogenicity of all selected ABCC8 variants, and CHI-inheritance pattern for 16 out of the 20 patients. This study highlights the value of combining RNA and protein functional approaches in variant interpretation and reveals the minigene splicing assay as a new tool for CHI molecular diagnostics.


Subject(s)
Computational Biology , Congenital Hyperinsulinism , Sulfonylurea Receptors , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Exons/genetics , Humans , RNA Splicing/genetics , Sulfonylurea Receptors/genetics
20.
J Med Genet ; 58(3): 205-212, 2021 03.
Article in English | MEDLINE | ID: mdl-32430360

ABSTRACT

BACKGROUND: Ubiquitination has a central role in numerous biological processes, including cell development, stress responses and ageing. Perturbed ubiquitination has been implicated in human diseases ranging from cancer to neurodegenerative diseases. SIAH1 encodes a RING-type E3 ubiquitin ligase involved in protein ubiquitination. Among numerous other roles, SIAH1 regulates metabotropic glutamate receptor signalling and affects neural cell fate. Moreover, SIAH1 positively regulates Wnt signalling through ubiquitin-mediated degradation of Axin and accumulation of ß-catenin. METHODS: Trio exome sequencing followed by Sanger validation was undertaken in five individuals with syndromic developmental delay. Three-dimensional structural modelling was used to predict pathogenicity of affected residues. Wnt stimulatory activity was measured by luciferase reporter assays and Axin degradation assays in HEK293 cells transfected with wild-type and mutant SIAH1 expression plasmids. RESULTS: We report five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia, in whom exome sequencing identified de novo monoallelic variants in SIAH1. In silico protein modelling suggested alteration of conserved functional sites. In vitro experiments demonstrated loss of Wnt stimulatory activity with the SIAH1 mutants, suggesting variant pathogenicity. CONCLUSION: Our results lend support to SIAH1 as a candidate Mendelian disease gene for a recognisable syndrome, further strengthening the connection between SIAH1 and neurodevelopmental disorders. Furthermore, the results suggest that dysregulation of the Wnt/ß-catenin pathway may be involved in the pathogenesis.


Subject(s)
Developmental Disabilities/genetics , Genetic Predisposition to Disease , Muscle Hypotonia/genetics , Nuclear Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Axin Protein/genetics , Child , Child, Preschool , Developmental Disabilities/pathology , Face/abnormalities , Face/pathology , Female , HEK293 Cells , Humans , Infant , Male , Muscle Hypotonia/pathology , Proteolysis , Wnt Signaling Pathway/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...